

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Continuous Integration Process

This document explains the fabric-sdk-node Jenkins pipeline flow and FAQ’s on the
build process to help developer to get more femilarize with the process flow.

To manage CI jobs, we use JJB [https://docs.openstack.org/infra/jenkins-job-builder].
Please see the pipeline job configuration template here https://ci-docs.readthedocs.io/en/latest/source/pipeline_jobs.html#job-templates.

CI Pipeline flow

	Every Gerrit patchset triggers a verify job and run the below tests from the Jenkinsfile

	gulp test-headless

	gulp test-integration,

	gulp run-test-cucumber

	gulp run-test-logger targets to run sdk-node tests.

Supported platforms

	x86_64

	s390x (Not for every patchset but run tests in daily builds)

CI Process Flow

[image: _images/sdk_node_pipeline_flow.png]

As we trigger fabric-sdk-node-verify-x86_64 pipeline jobs for every gerrit patchset, we execute
the pipeline stages in the below order.

All the above tests run on the Hyperledger infarstructure x86_64 build nodes. All these nodes uses
the packer with pre-configured software packages. This helps us to run the tests in much faster than
installing required packages everytime.

Below steps shows what each stage does in the Jenkins pipeline verify and merge flow. Every
Gerrit patchset triggers the fabric-sdk-node-verify-x86_64 job and runs the below tests on x86_64 platform.
Before execute the below tests, it clean the environment (Deletes the left over build artifiacts) and
clone the repository with the Gerrit Refspec.

VERIFY FLOW

CleanEnvironment -- OutputEnvironment -- Checkout SCM -- Build Artifacts -- NPM Install -- Headless Tests -- Integration Tests -- Cucumber & Logger Tests

and the below is the series of stages for the merge job flow. (fabric-sdk-node-merge-x86_64)

Merge FLOW

CleanEnvironment -- OutputEnvironment -- Checkout SCM -- Build Artifacts -- NPM Install -- Headless Tests -- Integration Tests -- Cucumber & Logger Tests -- Publish NPM modules -- Publish API Docs

	After cleanEnvironment and Display the environment details on the Jenkins console, CI scripts
fetches the Gerrit refspec and try to execute Headless and Integration Tests. docker-ready
is a gulp sub target which will try to pull release-1.4 latest stable images from Hyperledger DockerHub.
Once the tests are executed successfully, the condition checks whether it is a verify or merge.
If it is a merge job, Jenkins triggers the publish npm modules and api docs stages and
publishes the npm modules and api docs to gh-pages.

Note: Script provides an option to build the images on the latest fabric commit and run sdk-node
tests. For this you have to modify IMAGE_SOURCE to build in the ci.properties file.
If you would like to pull images from nexus change IMAGE_SOURCE to nexus. Though we pull
the images from nexus with this change, in release branches sdk gulp file pulls the images from
dockerhub. So till we change the build process in the gulp file, let’s pull these images from
docker hub.

	Snapshot npm modules can be seen here. https://www.npmjs.com/package/fabric-client, https://www.npmjs.com/package/fabric-ca-client etc..

	API docs can be accessible from https://fabric-sdk-node.github.io/release-1.4/index.html

See below FAQ’s to contribute to CI changes.

FAQ’s

Trigger failed jobs through gerrit comments

Developers can re-trigger the failed verify jobs by post reverify as a comment phrase to the
gerrit change set that retriggers all the verify jobs. To do so, follow the below process:

Step 1: Open the gerrit patch set for which you want to reverify the build

Step 2: Click on Reply, then type reverify and click on post

This kicks off all the fabric-sdk-node verify jobs. Once the build is triggered, you can observe
the Jenkins console output, if you are interested in viewing the log messages to determine how well
the build jobs are progressing.

Developer can post below comments to trigger the particular failed build:

reverify-x or reverify - to restart the build on sdk-node-verify x86_64 platform.
remerge-x or remerge - to restart the build on sdk-node-merge x86_64 platform.

Where to see the output of the stages?

Piepline supports two views (stages and blueocean). Staged views shows on the Jenkins job main
page and it shows each stage in the order and the status. For better view, we suggest you to access
the BlueOcean plugin. Click on the JOB Number and click on the Open Blue Ocean link that
shows the build stages in pipeline view. Also, we capture the .logs files and keep them on
the Job console.

How to add more stages to this pipeline flow?

We use scripted pipeline syntax with groovy and shell scripts. Also, we use global shared library
scripts which are placed in https://github.com/hyperledger/ci-management/tree/master/vars.
Try to leverage the common functions in your code. All you have to do is, undestand the pipeline
flow of the tests, add more stages as mentioned in the existing Jenkinsfile.

What steps I have to modify when I create a branch from master?

As the Jenkinsfile is completely parametrized, you no need to modify anything in the Jenkinsfile but you
may endup modifying ci.properties file with the Base Versions, Baseimage versions, GO_VER etc related to
the new branch.

How will I get build failure notifications.

On every merge failure, we send an build failure email notications to the submitter of the patchset and send build details to the Rocket Chat jenkins-robot channel. Check this here https://chat.hyperledger.org/channel/jenkins-robot

Build Scripts

Multiple build scripts are used in fabric-sdk-node CI flow. We use global shared library scripts and Jenkinsfile.

Global Shared Library - https://github.com/hyperledger/ci-management/tree/master/vars

Jenkinsfile - https://github.com/hyperledger/fabric-sdk-node/tree/release-1.4/Jenkinsfile

ci.properties - https://github.com/hyperledger/fabric-sdk-node/tree/release-1.4/ci.properties
(ci.properties is the only file you have to modify with the values requried for the specific branch.)

Packer Scripts - https://github.com/hyperledger/ci-management/blob/master/packer/provision/docker.sh
(Packer is a tool for automatically creating VM and container images, configuring them and post-processing
them into standard output formats. We build Hyperledger’s CI images via Packer and attach them to x86_64
build nodes. On s390x, we install manually. See the packages we install as a pre-requisite in the CI x86 build nodes.)

How to reach out to CI team?

Post your questions or feedback in https://chat.hyperledger.org/channel/ci-pipeline or https://chat.hyperledger.org/channel/fabric-ci Rocket Chat channels. You can also create a JIRA task or bug in FABCI project. https://jira.hyperledger.org/projects/FABCI

 This tutorial describes how to prepare a development environment in order to
build a business application to use a blockchain network based on Hyperledger
Fabric. At a high level, a business application running on a Hyperledger Fabric
network is made up of two parts: chaincode that runs in the servers
(endorser [http://hyperledger-fabric.readthedocs.io/en/latest/arch-deep-dive.html#peer]
nodes), and client code that runs in the Node.js application.

For chaincode development, please visit the Hyperledger Fabric
chaincode tutorials [http://hyperledger-fabric.readthedocs.io/en/latest/chaincode.html].

For complete information on starting a Hyperledger Fabric network, please see the Build your first network tutorial [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

The following tutorial assumes a chaincode has been developed and
the focus is developing the client application.

What makes up a Hyperledger Fabric application development environment?

Below you’ll find a high level summary of the Hyperledger Fabric design aimed
at an introductory level of understanding, so that you can be on your way to
setting up the development environment. For a comprehensive description of
the concepts, the architecture, please visit the official
Hyperledger Fabric documentation [http://hyperledger-fabric.readthedocs.io/en/latest].

First of all, you will need an orderer.
But isn’t an orderer responsible for the consensus?
Why start here? It’s true that the main responsibility of the ordering service
of a Hyperledger Fabric blockchain network is to provide consensus on a
transaction among the maintainers of the ledger, a.k.a the committer nodes.
However, the ordering service also maintains critical data about the overall
network: what organizations are participating, what channels have been created,
which organizations are part of a given channel, and last but not least what
policies are in place for any kind of change to the network. In essence, the
ordering service holds the network together.

Ok we’ve got to have an orderer node so we can add participating organizations
to it and get a network started. Next you would need peers for each
participating organization in order to participate in transaction
endorsing and maintaining the ledger.

The peer nodes play two roles: endorser and committer. A peer’s endorser
role may be enabled or disabled based on the bootstrap configuration.
Note that all peers are always committers. For high availability you would
want more than one peer for each organization in a real deployment.
For the development environment, one peer per organization is sufficient
under most circumstances. This peer will be both an endorser and a committer.
It will be sent transaction proposals to endorse and queries to discover
information from the ledger.

Another important role that peer nodes play is broadcasting events to
interested parties. Whenever a block is added to the ledger, an event
is sent by the peer through a dedicated streaming port. Any application
within the organization can register themselves to listen on that port
to get notified.

The final piece of the puzzle is identities. Every operation in a Hyperledger
Fabric network must be digitally signed for the purposes of access control,
or provenance/auditing (who did what), or both. Identities are
based on the Public Key Infrastructure (PKI)) standards. Every orderer node,
every peer node and every user/transactor must have a key pair with the
public key wrapped in a x.509 certificate signed by a
Certificate Authority (CA). Since x.509 is an open standard, Hyperledger Fabric
would work with any existing certificate authority. This is typically a painful
process with lots of potential red tape to get real certificates, so for the
development purposes it is a popular practice to use self-signed certificates
locally generated. As you will see in the later section, the Hyperledger Fabric
provides tools to make this less painful.

Also related to identities, you should make a decision on whether
Fabric-CA [http://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html]
should be part of your solution. This is a server with REST APIs that supports
dynamic identity management with registration, enrollment (getting certificates),
revocation and re-enrollment. So it is very useful in providing user identities
on the fly. Note that user identities provisioned this way are only of the
MEMBER role, which means it won’t be able to perform certain operations reserved
for the ADMIN role:

	create/update channel

	install/instantiate chaincode

	query installed/instantiated chaincodes

For these privileged operations, the client must use an ADMIN user to submit
the request.

If you choose to not use Fabric-CA, everything will still work, but the application
is responsible for managing the user certificates.

Prerequisites

You will need the following software:

	Docker and Docker Compose [http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html#docker-and-docker-compose] - see Hyperledger Fabric for details

	Nodejs [https://nodejs.org/en/download/]
v8.9.0 or higher, up to 9.0 (Node v9.0+ is not supported)

Prepare crypto materials

As discussed above, identities are established with x.509 certificates.
If you think about it, we will need a whole bunch of certificates because
there are many identities involved:

	peers need identities to sign endorsements

	orderers need identities to sign proposed blocks for the committers
to validate and append to the ledger

	applications need identities to sign transaction requests

	the Fabric CA themselves also need identities, so their signatures
in the certificates can be validated

Luckily there is a tool for that. Follow
this guide [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html#crypto-generator]
to use the cryptogen tool to generate all the required keys and
certificates in one swoop.

Note that the cryptogen tool will automatically generate identities for
the Fabric CA nodes for each orderer and peer organization,
which can be used to start the Fabric-CA servers (if you choose to use
it as part of the solution as discussed above). In addition, it also
generates one admin user of the ADMIN role with the privileges to perform
admin-level operations listed above. Finally, it also generates regular
users (MEMBER role) for submitting transactions.

This would get us all the crypto materials needed to start things up.

Getting things rolling for real - the genesis block

As discussed above, the orderer should be the first step to bootstrap (launch)
a network. The orderer will need the initial configurations wrapped inside
a genesis block. Follow the
instructions here [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html#configuration-transaction-generator]
to use the configtxgen tool to generate a genesis.block.
The output, a genesis block file for the orderer, will be used in
the next step to launch the orderer node.

Notice some features are non-backwards compatible. To enable features from a particular fabric version,
the Capabilities section in configtx.yaml should be updated before generate the genesis.block.

Start the network

Now we are ready to put it all together. The easiest way to launch the
development environment is to use docker-compose. Follow the
instructions here [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html#start-the-network]
to start the network. To minimize the chances of a mistake,
you may wish to run the network without TLS.

The above steps give you a development environment. Now before you can ask
it to process any transactions, you must first create a channel.

 steps of a channel create:

 This tutorial illustrates the creation of a Hyperledger Fabric channel using
the Node.js fabric-client SDK. It shows how to use an initial (default)
channel definition and how to start with that definition to build a
custom definition. The process to create a network and channels
also involves creating and working with cryptographic material,
this will not be discussed here.

For more information on:

	getting started with Hyperledger Fabric see
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

	the configuration of a channel in Hyperledger Fabric and the internal
process of creating and updating see
Hyperledger Fabric channel configuration [http://hyperledger-fabric.readthedocs.io/en/latest/configtx.html]

	cryptographic generation see
cryptogen [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html#crypto-generator]

	configuration transaction generator see
configtxgen [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html#configuration-transaction-generator]

	configuration translation tool see
configtxlator [https://github.com/hyperledger/fabric/tree/master/examples/configtxupdate]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
protobuf [https://developers.google.com/protocol-buffers/],
and of Node application development, including the use of the
Javascript Promise.

The examples shown below are based on the balance-transfer sample application. see Hyperledger Fabric Samples [https://github.com/hyperledger/fabric-samples/tree/master/balance-transfer]

steps of a channel create:

	run the configtxgen tool to generate a genesis block

	run the configtxgen tool to generate an initial binary
configuration definition

	get a sign-able channel definition in one of two ways

	use the initial binary channel configuration definition

	use the fabric-client SDK to extract the sign-able channel definition
from the initial binary channel configuration definition

	build a custom definition

	use the configtxlator to convert the initial binary channel
configuration definition to readable text

	edit the readable text
more info [http://hyperledger-fabric.readthedocs.io/en/latest/configtx.html]

	use the configtxlator to convert the edited text to a
sign-able channel definition

	use the fabric-client SDK to sign the sign-able channel definition

	use the fabric-client SDK to send the signatures and the
sign-able channel definition
to the orderer

	use the fabric-client SDK to have the peer join the channel

	then new channel may be used

Use the initial definition to build a sign-able channel definition

The initial binary channel configuration definition generated by the
configtxgen tool [http://hyperledger-fabric.readthedocs.io/en/latest/configtx.html]
is a binary file containing the Hyperledger Fabric configuration protobuf
common.Envelope element. Inside this element is the common.ConfigUpdate
protobuf element. This configuration element is the one that must be signed.
A profile element in the configtx.yaml is the source for the initial binary channel
configuration definition created by the configtxgen tool.

../../../bin/configtxgen -channelID mychannel -outputCreateChannelTx mychannel.tx -profile TwoOrgsChannel

Have the fabric-client SDK extract the config update element from the
mychannel.tx file

// first read in the file, this gives us a binary config envelope
let envelope_bytes = fs.readFileSync(path.join(__dirname, 'fabric-samples/balance-transfer/artifacts/channel/mychannel.tx'));
// have the nodeSDK extract out the config update
var config_update = client.extractChannelConfig(envelope_bytes);

The binary config_update may now be used in the signing process and sent to the
orderer for channel creation.

You may ask why is a common.ConfigUpdate used for a create. This makes the
process of create and update the same. The create of a new channel is a delta
on what is defined in the system channel and an update is a delta on what is
defined in the channel. The common.ConfigUpdate object submitted will only
contain the changes for both a create and an update.

Creating a custom sign-able channel definition

The easiest way to get started with creating a custom channel configuration
is to have the configtxlator convert an existing binary that has been or could
be used to create a new channel to human readable JSON. There are many elements
of the configuration and it would be very difficult to start with nothing.
Using the same configtx.yaml file used to generate your Hyperledger Fabric
network, use the configtxgen tool to create a initial binary
configuration definition for a new channel.
Then by sending that binary to the configtxlator to convert it to JSON, you
will be able to see the layout and have a starting point. That JSON could also
be used as a template for creating other new channels on your network.
A new channel will inherit settings from the system channel for settings not
defined in the new channel configuration. Organizations that will be on the
new channel must be defined in a consortium on the system channel. Therefore
having the readable definition of the system channel of your network would be
helpful when creating a new channel. Send the genesis.block that was used
to start the Hyperledger Fabric network to the configtxlator to get a
JSON file to be used as a reference.

Use the configtxgen tool to produce the binary config files. From the
sample directory fabric-samples/balance-transfer/artifacts/channel.

export FABRIC_CFG_PATH=$PWD
../../../bin/configtxgen -outputBlock genesis.block -profile TwoOrgsOrdererGenesis
../../../bin/configtxgen -channelID mychannel -outputCreateChannelTx mychannel.tx -profile TwoOrgsChannel

Send the two binary files to the configtxlator service. Since this step is done
only once and does not require a Node.js application, we will use cURL to
simplify and speed up getting the results. Notice that configtxlator service
path has decode (convert from binary to JSON). The path must also include
the type of object of the binary, in the first case, it is a common.Block.
The “decode” or “encode” may be done for any of the protobuf message object
types found in the fabric-client\lib\protos directory protobuf files.
First start the configtxlator service, from the fabric-samples/bin directory

./configtxlator start

Then

curl -X POST --data-binary @genesis.block http://127.0.0.1:7059/protolator/decode/common.Block > genesis.json
curl -X POST --data-binary @mychannel.tx http://127.0.0.1:7059/protolator/decode/common.Envelope > mychannel.json

The results of decoding the file mychannel.tx which is a common.Envelope
produced by the configtxgen tool contains a common.ConfigUpdate object.
This object has the name “config_update” within the “payload.data” JSON object.
This is the object that is needed as the source of the template to be used for
creating new channels. The common.ConfigUpdate is the object that will be
signed by all organizations and submitted to the orderer to create a
new channel.

The following is the extracted JSON “config_update” (common.ConfigUpdate)
object from the decode of the “TwoOrgsChannel” channel create
binary generated above.

{
 "channel_id": "mychannel",
 "read_set": {
 "groups": {
 "Application": {
 "groups": {
 "Org1MSP": {}
 }
 }
 },
 "values": {
 "Consortium": {
 "value": {
 "name": "SampleConsortium"
 }
 }
 }
 },
 "write_set": {
 "groups": {
 "Application": {
 "groups": {
 "Org1MSP": {}
 },
 "mod_policy": "Admins",
 "policies": {
 "Admins": {
 "policy": {
 "type": 3,
 "value": {
 "rule": "MAJORITY",
 "sub_policy": "Admins"
 }
 }
 },
 "Readers": {
 "policy": {
 "type": 3,
 "value": {
 "sub_policy": "Readers"
 }
 }
 },
 "Writers": {
 "policy": {
 "type": 3,
 "value": {
 "sub_policy": "Writers"
 }
 }
 }
 },
 "version": "1"
 }
 },
 "values": {
 "Consortium": {
 "value": {
 "name": "SampleConsortium"
 }
 }
 }
 }
}

Note that the Consortium name used must exist on the system channel.
All organizations that you wish to add to the new channel must be defined
under in the Consortium section with that name on the system channel.
Use the decoded genesis block to verify all values, for example by looking
in the genesis.json file generated above. To add an organizations to the
channel, they must be placed under the groups section under the
Applications section as shown above. See that Org1MSP is a property of
Applications.groups section. In this example all of the settings for the
organization Org1MSP will be inherited from the system channel (notice
the empty object “{}” for this organization’s properties). To see the
current settings for this organization look within the SampleConsortium
section under the Consortium section of the system channel (the genesis
block of the system channel).

Once you have a JSON configuration representing your channel, send it the
configtxlator to be encoded into a configuration binary. The following
example of sending a REST request to the configtxlator uses the Node.js
package superagent because of the ease of use for HTTP requests.

var response = superagent.post('http://127.0.0.1:7059/protolator/encode/common.ConfigUpdate',
 config_json.toString())
 .buffer()
 .end((err, res) => {
 if(err) {
 logger.error(err);
 return;
 }
 config_proto = res.body;
 });

Signing and submitting the channel update

The binary configuration must be signed by all organizations. The application
will have to store the binary configuration and have it available to be signed
along with storing all the signatures as it collects them. Then once the
signing is complete, the application will send the binary configuration and
all the signatures to the orderer using the fabric-client
SDK API createChannel().

First the signing, assuming the client fabric-client SDK object has
a valid user in a required organization

var signature = client.signChannelConfig(config_proto);
signatures.push(signature);

Now it is time for the channel create, assuming that the signatures object
is an array of common.ConfigSignature returned
by the client.signChannelConfig() method.

Note: The orderer must be started with the genesis.block that was generated
from the same configuration file as the initial binary channel
configuration definition

// create an orderer object to represent the orderer of the network
var orderer = client.newOrderer(url,opts);

// have the SDK generate a transaction id
let tx_id = client.newTransactionID();

request = {
 config: config_proto, //the binary config
 signatures : signatures, // the collected signatures
 name : 'mychannel', // the channel name
 orderer : orderer, //the orderer from above
 txId : tx_id //the generated transaction id
};

// this call will return a Promise
client.createChannel(request)

The createChannel API returns a Promise to return the status of the submit.
The channel create will take place asynchronously by the orderer.

After a small delay of a few seconds the channel will have been created by the
orderer and may now be joined by the peers. Issue the following to the peers
that are required on the channel. This is a two step process of first getting
the genesis block of the channel and then sending it to the peer. In the
following example the genesis block was retrieved from the orderer,
but could have also been loaded from a file.

// set the channel up with network endpoints
var orderer = client.newOrderer(orderer_url,orderer_opts);
channel.addOrderer(orderer);
var peer = client.newPeer(peer_url,peer_opts);
channel.addPeer(peer);

tx_id = client.newTransactionID();
let g_request = {
 txId : 	tx_id
};

// get the genesis block from the orderer
channel.getGenesisBlock(g_request).then((block) =>{
 genesis_block = block;
 tx_id = client.newTransactionID();
 let j_request = {
 targets : targets,
 block : genesis_block,
 txId : 	tx_id
 };

 // send genesis block to the peer
 return channel.joinChannel(j_request);
}).then((results) =>{
 if(results && results.response && results.response.status == 200) {
 // join successful
 } else {
 // not good
 }
});

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Overview

 This tutorial illustrates the use of channel-based events.
Channel-based events are a new feature of the Hyperledger Fabric Node.js client
as of v1.1. It replaces the event hub from v1.0, with a more useful
and reliable interface for applications to receive events.

For more information on getting started with Fabric check out
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

The following assumes an understanding of Fabric networks (orderers and peers),
and of Node application development, including the use of the Javascript Promise.

Overview

A client application may use the Fabric Node.js client to register a “listener”
to receive blocks as they are added to the channel ledger. We call these
“channel-based events”, and they allow a client to start to receive blocks from
a specific block number, allowing event processing to run normally on blocks that
may have been missed. The Fabric Node.js client can also assist client
applications by processing the incoming blocks and looking for specific
transactions or chaincode events. This allows a client application to be
notified of transaction completion or arbitrary chaincode events without having
to perform multiple queries or search through the blocks as they are received.

Applications may use block or chaincode events to provide channel data to
other applications. For example an application could listen for block events
and write transaction data to a data store for the purpose of performing
queries or other analytics against the channel’s data.
For each block received, the block listener application could iterate through
the block transactions, and build a data store using the key/value writes from
each valid transaction’s ‘rwset’ (see the {@link Block} and {@link Transaction}
Type Definitions for details of these data structures).

The event service also allows applications to receive “filtered” block events
(which allow for receiving transaction validation status without providing
other sensitive information). Access to “filtered” and “unfiltered” events
can be configured independently in Fabric. The default behavior is to connect to
receive filtered block events. To connect to receive unfiltered block events
call connect(true) (see below).

Note that if you register for a block event and then submit a transaction, you should not
make any assumptions about which block contains your transaction. In particular,
you should not assume that your transaction is in the block associated with the
first block event received after registration to the peer’s channel-based event
service. Instead, you may simply register for a transaction event.

Channel APIs

	newChannelEventHub(peer) – A Channel instance method to get a new instance
of a ChannelEventHub.

	getChannelEventHubsForOrg – Gets a list of ChannelEventHubs based on an
organization. If the organization name is omitted then the current organization
of the current user is used.

ChannelEventHub APIs

	registerBlockEvent(eventCallBack, errorCallBack, options) – To register for
block events.

	unregisterBlockEvent(reg_num) – To remove a block registration.

	registerTxEvent(tx_id, eventCallBack, errorCallBack, options) – To register
for a specific transaction event.

	unregisterTxEvent(tx_id) – To remove a specific transaction registration.

	registerChaincodeEvent(ccid, eventCallBack, errorCallBack, options) – To
register for chaincode events.

	unregisterChaincodeEvent(cc_handle) – To remove a chaincode event
registration.

	connect({full_block: true}) – To have the client channel event hub connect with the
fabric channel-based event service. This call must be made before events will be
received by your instance of a ChannelEventHub. When the channel-based event hub
connects with the service, it will request to receive blocks or filtered blocks.
If the full_block parameter is omitted, it will default to false
and filtered blocks will be requested. Receiving blocks or filtered blocks
can not be changed once connect() is called.
When replaying blocks (by setting the startBlock and endBlock) connect() must be
called after registering the listener as the connection to the peer must be
setup to request existing blocks.

	disconnect() – To have the client channel event hub shutdown the connection
to the fabric network channel-based event service and notify all current channel
event registrations of the shutdown by using the registered errorCallBacks.

peer parameter

This parameter must be included when getting a new instance of the
ChannelEventHub. The value may be a Peer instance or the name of a peer when
using a connection profile see How to use a common common connection profile file.

eventCallback parameter

This parameter must be included. This is the callback function to be notified
when this channel receives a new block, when listening for a specific
transaction or chaincode events.

errorCallback parameter

This is an optional parameter. This is the callback function to be notified when
this channel event hub is shutdown. The shutdown may be caused by a fabric
network error, network connection problem or by a call to the disconnect()
method.
This callback will also be called when the channel event hub is shutdown
due to the last block being received if replaying with the endBlock set to ‘newest’.

options parameter

This is an optional parameter. This parameter will contain the following optional
properties:

	{integer | ‘newest’ | ‘oldest’ | ‘last_seen’} startBlock
(Optional) The starting block number for event checking.
When included, the Peer’s channel-based event service will be asked to start
sending blocks from this block number.
This is how to resume listening or replay missed blocks that were added
to the ledger. This option changes how the connection is made to the fabric
Peer’s channel-based event service,
therefore the registration must be made before the
channel event hub has setup the connection.
Replaying events may confuse other event listeners; therefore, only one listener
will be allowed on a ChannelEventHub when startBlock
and/or endBlock are used on a listener registration.

	Number - A number value may be specified as the block number.

	'newest' - The string of ‘newest’. This will have the block
number determined by the Peer’s channel-based event service at connect
time of the the newest block on the ledger.

	'oldest' - The string of ‘oldest’. This will have the block
number determined by the Peer’s channel-based event service at connect
time of the the oldest block on the ledger, unless your ledger
has been pruned, this will be block 0.

	'last_seen' - The string of ‘oldest’. This will have the channel event hub
instance determine the block number at the time of the registration.
The number will be based on the last block that this channel event hub has
received from the Peer’s channel-based event service.
Using this option on an event listener does require that this
channel event hub has been previously running.

	{integer | ‘newest’ | ‘oldest’ | ‘last_seen’ } endBlock
(Optional) The ending block number for event checking.
When included, the Peer’s channel-based event service will be asked to stop
sending blocks once this block is delivered.
This is how to replay missed blocks that were added to the ledger. When a
startBlock is not included, the endBlock must be equal to or larger than
the current channel block height.
This option changes how the connection is made to the fabric
Peer’s channel-based event service, therefore the
registration must be made before the
channel event hub has setup the connection.
Replaying events may confuse other event
listeners; therefore, only one listener will be allowed on a ChannelEventHub
when startBlock and/or endBlock are used.
The value ‘newest’ will indicate that ‘endBlock’ will be calculated by the
peer as the newest block on the ledger.
This allows the application to replay up to the latest block on
the ledger and then the listener will stop and be notified by the
‘onError’ callback.

	Number - A number value may be specified as the block number.

	'newest' - The string of ‘newest’. This will have the block
number determined by the Peer’s channel-based event service at connect
time of the the newest block on the ledger.

	'oldest' - The string of ‘oldest’. This will have the block
number determined by the Peer’s channel-based event service at connect
time of the the oldest block on the ledger, unless your ledger
has been pruned, this will be block 0.

	'last_seen' - The string of ‘oldest’. This will have the channel event hub
instance determine the block number at the time of the registration.
The number will be based on the last block that this channel event hub has
received from the Peer’s channel-based event service.
Using this option on an event listener does require that this
channel event hub has been previously running.

	{boolean} unregister – (Optional) This setting indicates that the
registration should be removed (unregister) after the event is seen. When the
application is using a timeout to only wait a specified amount of time for the
transaction to be seen, the timeout processing should include the manual
‘unregister’ of the transaction event listener to avoid the event callbacks
being called unexpectedly. The default for this setting is different for the
different types of event listeners. For block listeners the default is true when
an end_block was set as a option, the listener will be active and receiving
blocks until the end block is received and then the listener will be automatically
unregistered. For transaction listeners the default is true and once the transaction
event has occurred the listener will be automatically unregistered. If the
transaction listener has used an endBlock, the default will be
to automatically unregister the listener even if the transaction has not been
seen.
For chaincode event listeners the default will be false as the match filter
might be intended for many transactions, however if the chaincode event
listener has set an endBlock it will be automatically unregistered after
the endBlock is seen.

	{boolean} disconnect – (Optional) This setting indicates to the
ChannelEventHub instance to automatically disconnect itself from the peer’s
channel-based event service once the event has been seen. The default is false.
When not set and the endBlock has been set the ChannelEventHub instance
will automatically disconnect itself.

	{boolean} as_array – (Optional) This setting indicates to the
ChannelEventHub instance to send all chaincode events to the
callback as array rather than one at a time. This setting is only
available for chaincode events.

How to use a Channel Event Hub

The ChannelEventHub class is very flexible. It allows for many usage models.

	waiting for my transaction to complete

	looking at chaincode events

	auditing a channel for all new blocks

	replay events

Transaction events

A majority of users will need to know when a transaction is committed to the
ledger.
All transactions have an unique identifier that may be monitored. Users may
register an event listener to indicate that a specific transaction has
been written to the ledger. This will be known as a transaction event.

Steps to be notified for a transaction event:

	Get a channel event hub instance, this may be done for every transaction
or may be done once and reused.

	Connect the channel event hub instance with the peer’s event service. You
may wish to connect before registering when reusing the ChannelEventHub
instance for many transactions.

	Create transaction and have it endorsed.

	Register your callback using the transaction ID string of the transaction
with the channel event hub instance.

	Connect the channel event hub if not already connected.

	Submit the endorsed transaction to be ordered.

	Wait to be notified of the transaction being committed to the ledger
or timeout if there is an issue.

	Unregister the event listener when transaction is seen, which will be done
automatically by default.

	Disconnect the channel event hub when finished listening,
which could be done automatically if configured.

Chaincode events

Chaincode programs running on the fabric network are able to add into a
transaction a name and a value, this is known as a chaincode event.
The “name” will most likely not be unique and more than one transaction
may contain the chaincode event name,
therefore the listener callback may be called many times. The listener may be
setup to use a regular expression when looking for a name match such that a
single listener may be notified with many different names.

NOTE: Chaincode events must be committed and written to the ledger before
a listener will be notified. The ChannelEventHub instance will not see
chaincode events in transactions until the transactions commits and is
written to the peer’s ledger on the peer that ChannelEventHub has connected
to the event service.

Steps to be notified when a chaincode event occurs:

	Get a channel event hub instance, this should be done once and reused.

	Connect the channel event hub instance with the peer’s event service. You
may wish to connect before registering when reusing the ChannelEventHub
instance for many transactions.

	Register your callback with the name of the chaincode event, you may use
a regular expression to match on more than one name.

	Connect the channel event hub if not already connected.

	Somewhere on the network a transaction is endorsed and committed containing
a chaincode event.

	Process the chaincode events as they come in.

	Unregister the event listener when finished.

	Disconnect the channel event hub when finished listening.

Block events

Once a ChannelEventHub connects to the Peer’s event service it will
start receiving blocks as they are added to the ledger, unless a
“startBlock” is specified, then it will start receiving blocks from
the block specified. When a block is received by the ChannelEventHub
instance from the Peer’s event service, this is known as a block
event,

Steps to be notified when a block event occurs:

	Get a channel event hub instance.

	Register to receive blocks.

	Connect the channel event hub instance with the peer’s event service.

	Somewhere on the network a transaction is endorsed and committed.

	Process the blocks as they come in.

	Disconnect the channel event hub when finished listening.

Steps to be notified when a block event occurs:

	Get a channel event hub instance.

	Register to receive blocks.

	Connect the channel event hub instance with the peer’s event service.

	Somewhere on the network a transaction is endorsed and committed.

	Process the blocks as they come in.

	Disconnect the channel event hub when finished listening.

Replay events

If you wish to look at events that already happened, use the “startBlock”
option to replay the events. Using the start block will connect to the
Peer’s event service and have it start sending existing blocks starting
with the block number specified rather than the latest block. Blocks will
be continued to be sent until the “endBlock” is seen. If no end block
is specified, then blocks will continue to be sent as they are added
to the ledger. Replay may be used to look again for your transaction
or chaincode events when your application was off-line. When not specifying
an end block the channel event hub may continued to be used to monitor for
new events as they happen on the channel after catching up on existing events.

Steps to be notified when a replay event occurs:

	Get a channel event hub instance.

	Register to receive your events.

	Connect the channel event hub instance with the peer’s event service using
a “startBlock”

	Process the events as they come in.

	Disconnect the channel event hub when finished listening.

Get a Channel Event Hub

Use the fabric-client {@link Channel}
{@link Channel#newChannelEventHub newChannelEventHub} object to
create new instances of {@link ChannelEventHub} objects.
Use the following to get a
ChannelEventHub instances that will be setup to work with the
Peer’s channel-based event service.
A ChannelEventHub instance will use all the same
endpoint configuration settings that the peer instance is using, like the tls
certs and the host and port address.

When using a connection profile (see) then
the peer’s name may be used to get a new channel event hub.

// peer is a instance
const channel_event_hub = channel.newChannelEventHub(peer);

// using the peer name
const channel_event_hub = channel.newChannelEventHub('peer0.org1.example.com');

When using a connection profile
(see [How to use a common common connection profile file]{@tutorial network-config})
then the peer’s name may be used to get a channel event hub. This will return
the same ChannelEventHub instance each time the “getChannelEventHub” is called.

// must use peer name
const channel_event_hub = channel.getChannelEventHub('peer0.org1.example.com');

Here is an example of how to get a list of channel event hubs when using a
connection profile. The following will get a list based on the current
organization that is defined in the currently active client section of the
connection profile. Peers defined in the organization that have the eventSource
set to true will be added to the list.

const channel_event_hubs = channel.getChannelEventHubsForOrg();

When creating a peer instance, you can get a ChannelEventHub instance by using
the peer instance.

const data = fs.readFileSync(path.join(__dirname, 'somepath/tlscacerts/org1.example.com-cert.pem'));
const peer = client.newPeer(
	'grpcs://localhost:7051',
	{
		pem: Buffer.from(data).toString(),
		'ssl-target-name-override': 'peer0.org1.example.com'
	}
);
const channel_event_hub = channel.newChannelEventHub(peer);

Connect a Channel Event Hub

Once you have a ChannelEventHub instance you will need to connect to the peer’s
event service. The “connect” call setups up a connection to the peer’s event
service. The connection with the peer’s event service must
indicate which blocks to receive. By default the ChannelEventHub will
specify the latest block as the starting point. This is usually the point
on the ledger where monitoring is required. Users may specify both a starting
point and an ending point. Specifying a “startBlock” is useful when the
application needs to look at existing transactions, chaincode events, or
blocks. The connect call may be made before or after registration, however
start blocks and end blocks may not be changed after the connect call is
made. The connection with the peer’s event service must also indicate
full blocks or filtered blocks. By default the connection will be setup
to receive filtered blocks as this contains transaction status and does
not contain sensitive data.

The best practice is to connect before registering for transaction events
and provide a callback.

const channel_event_hub = ...

channel_event_hub.connect({full_block: false}, (err, status) => {
	if (err) {
		// process the error
	} else {
		// connect was good
	}
});

channel_event_hub.register...

The best practice is connect after registering for chaincode events or
block events. connecting after allows the connect to easily be modified
to include the “startBlock” (for replay) and not change the flow.
Since filtered blocks contain very little information, chaincode events
and block events may not be useful unless full blocks are received. The
user performing the connect must have the access authority to see full
blocks.

const channel_event_hub = ...

channel_event_hub.register...

channel_event_hub.connect({full_block: true}, (err, status) => {
	if (err) {
		// process the error
	} else {
		// connect was good
	}
});

With replay, notice that the user gets the start block from a previous
ChannelEventHub.

const channel_event_hub = ...

const my_start = old_channel_event_hub.lastBlockNumber();

channel_event_hub.register...

channel_event_hub.connect({full_block: true, startBlock: my_start}, (err, status) => {
	if (err) {
		// process the error
	} else {
		// connect was good
	}
});

Block Listener

When there is a need to monitor for new blocks being added to the ledger,
use a block event listener. The Fabric client Node.js will be notified when a
new block is committed to the ledger on the peer. The client Node.js will then
call the registered callback of the application program. The callback will be
passed a JSON representation of the newly added block. Note that when connect()
is not called with a true value the callback will receive a filtered block.
The access rights of the user registering to receive full blocks will be checked
by the peer’s channel-based event service. When there is a need to see previously
added blocks, the registration of the callback may include a starting block
number. The callback will start receiving blocks from this number and continue
to receive new blocks as they are added to the ledger. This is a way for the
application to resume and replay events that may have been lost if the
application were to be offline. The application should remember the last block
it has processed to avoid replaying the entire ledger.

The following example will register a block listener to start receiving new
blocks as they are added to the ledger.

// keep the block_reg to unregister with later if needed
block_reg = channel_event_hub.registerBlockEvent((block) => {
	console.log('Successfully received the block event');
	<do something with the block>
}, (error)=> {
	console.log('Failed to receive the block event ::'+error);
	<do something with the error>
});

The following example will register with a start block number because this
application needs to resume at a specific block and replay the missed blocks.
The application callback will handle the replayed blocks in the same manor like
current events. The block listener will continue to receive blocks as they are
committed to the ledger on the peer.

// keep the block_reg to unregister with later if needed
block_reg = channel_event_hub.registerBlockEvent((block) => {
	console.log('Successfully received the block event');
	<do something with the block>
}, (error)=> {
	console.log('Failed to receive the block event ::'+error);
	<do something with the error>
},
	{startBlock:23}
);

The following example will register with a start block number and an end block.
The application needs to replay the missed blocks. The application callback will
handle the replayed blocks in the same manor as current events. The block
listener will be automatically unregistered and the ChannelEventHub shutdown
when the end block event is seen by the listener. The application will not have
to handle this housekeeping.

block_reg = channel_event_hub.registerBlockEvent((block) => {
	console.log('Successfully received a block event');
	<do something with the block>
	const event_block = Long.fromValue(block.header.number);
	if(event_block.equals(current_block)) {
		console.log('Successfully got the last block number');
		<application is now up to date>
	}
}, (error)=> {
	console.log('Failed to receive the block event ::'+error);
	<do something with the error>
},
	// for block listeners, the defaults for unregister and disconnect are true,
	// so they are not required to be set in the following example
	{startBlock:23, endBlock:30, unregister: true, disconnect: true}
);
channel_event_hub.connect({full_block: true}); //get full blocks and no connect callback

The following example will register with a start block number and an end block
set to ‘newest’. The error callback will be called to notify the application
that the last block has been delivered and that the listener has been shutdown.

block_reg = channel_event_hub.registerBlockEvent((block) => {
	console.log('Successfully received the block event');
	<do something with the block>
}, (error)=> {
	if(error.toString().indexOf('Newest block received')) {
		console.log('Received latest block');
		<application is now up to date>
	} else {
		console.log('Failed to receive the block event ::'+error);
		<do something with the error>
	}

},
	{startBlock:23, endBlock:'newest'}
);

Transaction listener

When there is a need to monitor for the completion of a transaction on your
organization’s peer, use a transaction listener. The client Node.js will be
notified when a new block is committed to the ledger on the peer. The client will
then check the block for registered transaction identifiers. If a transaction is
found then the callback will be notified with the transaction ID, the transaction
status, and the block number. Filtered blocks contain the transaction status, so
there is no need to connect to the peer’s channel-based event service to receive
full blocks. Since most non-admin users will not be able to see full blocks,
connecting to receive filtered blocks will avoid access issues when those users
only need to listen for their transactions to be committed.

The following example will show registering a transaction ID within a javascript
promise and building another promise for sending the transaction to the orderer.
Both promises will be executed together so that the results will be received for
both actions together. The default optional setting of unregister is true with
a transaction listener. Therefore in the following example the listener that is
registered will be automatically unregistered after the listener sees the
transaction.

let tx_object = client.newTransactionID();

// get the transaction ID string for later use
let tx_id = tx_object.getTransactionID();

let request = {
	targets : targets,
	chaincodeId: 'my_chaincode',
	fcn: 'invoke',
	args: ['doSomething', 'with this data'],
	txId: tx_object
};

return channel.sendTransactionProposal(request);
}).then((results) => {
// a real application would check the proposal results
console.log('Successfully endorsed proposal to invoke chaincode');

// start block may be null if there is no need to resume or replay
let start_block = getBlockFromSomewhere();

let event_monitor = new Promise((resolve, reject) => {
	let handle = setTimeout(() => {
		// do the housekeeping when there is a problem
		channel_event_hub.unregisterTxEvent(tx_id);
		console.log('Timeout - Failed to receive the transaction event');
		reject(new Error('Timed out waiting for block event'));
	}, 20000);

	channel_event_hub.registerTxEvent((event_tx_id, status, block_num) => {
		clearTimeout(handle);
		//channel_event_hub.unregisterTxEvent(event_tx_id); let the default do this
		console.log('Successfully received the transaction event');
		storeBlockNumForLater(block_num);
		resolve(status);
	}, (error)=> {
		clearTimeout(handle);
		console.log('Failed to receive the transaction event ::'+error);
		reject(error);
	},
		// when this `startBlock` is null (the normal case) transaction
		// checking will start with the latest block
		{startBlock:start_block}
		// notice that `unregister` is not specified, so it will default to true
		// `disconnect` is also not specified and will default to false
);
	channel_event_hub.connect();
});
let send_trans = channel.sendTransaction({proposalResponses: results[0], proposal: results[1]});

return Promise.all([event_monitor, send_trans]);
}).then((results) => {

Chaincode event listener

When there is a need to monitor for events that will be posted from within your
chaincode, use a chaincode event listener. The client Node.js will be
notified when a new block is committed to the ledger. The client will then check
for registered chaincode patterns within the chaincode event’s name field. The
registration of the listener includes a regular expression to be used in the
check against a chaincode event name. If a chaincode event name is found to
match the listener’s regular expression then the listener’s callback will be
notified with the chaincode event, the block number, transaction id, and
transaction status. Filtered blocks will not have the chaincode event payload
information; it has only the chaincode event name. If the payload information is
required, the user must have access to the full block and the channel event hub
must be connect(true) to receive the full block events from the peer’s
channel-based event service.

The following example demonstrates registering a chaincode event listener within a
javascript promise and building another promise for sending the transaction to
the orderer. Both promises will be executed together so that the results will
be received for both actions together. If a chaincode event listener is needed
for long term monitoring, follow the block listener example above.

let tx_object = client.newTransactionID();
let request = {
	targets : targets,
	chaincodeId: 'my_chaincode',
	fcn: 'invoke',
	args: ['doSomething', 'with this data'],
	txId: tx_object
};

return channel.sendTransactionProposal(request);
}).then((results) => {
// a real application would check the proposal results
console.log('Successfully endorsed proposal to invoke chaincode');

// Build the promise to register a event listener with the NodeSDK.
// The NodeSDK will then send a request to the peer's channel-based event
// service to start sending blocks. The blocks will be inspected to see if
// there is a match with a chaincode event listener.
let event_monitor = new Promise((resolve, reject) => {
	let regid = null;
	let handle = setTimeout(() => {
		if (regid) {
			// might need to do the clean up this listener
			channel_event_hub.unregisterChaincodeEvent(regid);
			console.log('Timeout - Failed to receive the chaincode event');
		}
		reject(new Error('Timed out waiting for chaincode event'));
	}, 20000);

	regid = channel_event_hub.registerChaincodeEvent(chaincode_id.toString(), '^evtsender*',
		(event, block_num, txnid, status) => {
		// This callback will be called when there is a chaincode event name
		// within a block that will match on the second parameter in the registration
		// from the chaincode with the ID of the first parameter.
		console.log('Successfully got a chaincode event with transid:'+ txnid + ' with status:'+status);

		// might be good to store the block number to be able to resume if offline
		storeBlockNumForLater(block_num);

		// to see the event payload, the channel_event_hub must be connected(true)
		let event_payload = event.payload.toString('utf8');
		if(event_payload.indexOf('CHAINCODE') > -1) {
			clearTimeout(handle);
			// Chaincode event listeners are meant to run continuously
			// Therefore the default to automatically unregister is false
			// So in this case we want to shutdown the event listener once
			// we see the event with the correct payload
			channel_event_hub.unregisterChaincodeEvent(regid);
			console.log('Successfully received the chaincode event on block number '+ block_num);
			resolve('RECEIVED');
		} else {
			console.log('Successfully got chaincode event ... just not the one we are looking for on block number '+ block_num);
		}
	}, (error)=> {
		clearTimeout(handle);
		console.log('Failed to receive the chaincode event ::'+error);
		reject(error);
	}
		// no options specified
		// unregister will default to false
		// disconnect will default to false
);
});

// build the promise to send the proposals to the orderer
let send_trans = channel.sendTransaction({proposalResponses: results[0], proposal: results[1]});

// now that we have two promises all set to go... execute them
return Promise.all([event_monitor, send_trans]);
}).then((results) => {

The default is to receive the chaincode events one at a time, however
it would be difficult to know that a chaincode event was missed
and to maintain the order within the block.
Using the new option as_array the callback will
receive all chaincode events found in a block as an array.
The following example will register a chaincode listener with a callback that
will handle the chaincodes as an array, notice the fifth parameter is an
options object with the ‘as_array’ true setting.

channel_event_hub.registerChaincodeEvent(
 'mychaincode',
 'myeventname',
 (...events) => {
 for (const {chaincode_event, block_num, tx_id, tx_status} of events) {
 /* process each event */
 }
 },
 (err) =>{
 /* process err */
 },
 { as_array: true}
);

When using mutual tls

All peers and orderers objects need to use the same client side credentials
for a mutual TLS connection. The credentials must be assigned to the ‘client’
object instance before it is used to create the peer used in the ChannelEventHub
creation.

const client = new Client();
client.setTlsClientCertAndKey(tlsInfo.certificate, tlsInfo.key);

const channel = client.newChannel('mychannel');
const peer = client.newPeer('grpcs://localhost:7051', {
	pem: '<pem string here>',
	'ssl-target-name-override': 'peer0.org1.example.com'
});
channel.addPeer(peer);
const channelEventHub = channel.newChannelEventHub(peer);

When connecting to replay

Your application may be recording the block numbers as they come in or
it may use the last block of another channel event hub.
Your application has been off line and now wishes to catch
up on the missed blocks and then continue to process new blocks.
The following will connect a channel event hub to the
Peer’s channel-based event service
at the point of your choice and since there is no endBlock specified, it will
continue to receive the blocks as they are added to the ledger.

Note: Use the {@link ChannelEventHubs#lastBlockNumber ChannelEventHubs.lastBlockNumber()}
to get the number of the last block received from a previously running
ChannelEventHub instance.

const channel_event_hub = channel.newChannelEventHub(mypeer);

// be sure to register your listeners before calling `connect` or you may
// miss an event
channel_event_hub.registerBlockEvent(eventCallBack, errorCallBack, options)

const my_starting_point = this._calculate_starting_point(old_event_hub);

channel_event_hub.connect({startBlock: my_starting_point}, my_connect_call_back);

When reconnecting

Your application has a long running block listener or chaincode event listener
and you wish to restart the event listening. The following will reconnect the
channel event hub to the
Peer’s channel-based event service and not disturb the existing
event listeners. The connection will be setup to start sending blocks from the
last block the channel event hub had seen. The listeners may be notified
by a block or event that has already been seen and this may be used to verify
that notifications are again running.

channel_event_hub.reconnect({startBlock: 'last_seen'}, my_connect_call_back);

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Overview

 This tutorial illustrates the use of the service discovery by the Hyperledger Fabric Node.js Client as of 1.2.

For more information on:

	getting started with Hyperledger Fabric see
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

	the configuration of a channel in Hyperledger Fabric and the internal
process of creating and updating see
Hyperledger Fabric channel configuration [http://hyperledger-fabric.readthedocs.io/en/latest/configtx.html]

	Service Discovery [https://hyperledger-fabric.readthedocs.io/en/latest/discovery-overview.html]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development, including the use of the
Javascript promise and async await.

Overview

The service discovery provided by the Hyperledger Fabric helps an application to
understand the current view of the network. The service discovery also has insight
into the endorsement policy of chaincodes and is able to provide various list of
peers that are currently active on the network that could be used to endorse a
proposal.
To use the service the application will have to connect with just one peer.

Modified API’s that will use the service discovery

	channel.initialize() - This method has been enhanced by adding an option to
query a peer using the new service discovery to initialize the channel object.
This method may be call at anytime to reinitialize the channel. When using discovery,
this may be used to assign a new target peer providing the discovery service.
The initialize() method is also required to instantiate the handlers, by default
the handlers shipped with the fabric-client are designed to use the discovery
results.

	channel.sendTransactionProposal() - This method has been enhanced to use the
discovered peers to send the endorsement proposal.

	channel.sendTransaction() - This method has been enhanced to use the discovered
orderers to send the signed endorsements.

New API’s that will use service discovery

	channel.refresh() - The channel will be refreshed with new service discovery
results, add new peers, orderers, and MSPs. The call will use the service discovery
settings as provided on the channel.initialize() call. If a new peer is required
for the refresh of discovery results then call the channel.initialize() with a new
target peer rather then calling refresh().

	channel.getDiscoveryResults() - The channel will cache the results of the last query
made to the service discovery and make the results available. The call will use
the discovery-cache-life setting to determine if the results should be refreshed.
if the results need to be refreshed, the channel.refresh() will be called
internally to fetch new service discovery results. The call is used by the
DiscoveryEndorsementHandler as it starts to determine the target peers.

	client.queryPeers() - A client object will be able to query a target peer
using the discovery service to provide a list of peer endpoints and associated
organizations active on the network at the time of the query. see {@link Client#queryPeers}

New configuration settings

	initialize-with-discovery - boolean - When the applications calls for the
channel to be initialized, service discovery will be used. (default false)

	discovery-cache-life - integer (time in milliseconds) - The amount of time the
service discovery results are considered valid. (default 300000 - 5 minutes)

	override-discovery-protocol - string - Override the protocol to use when
building URL’s for the discovered endpoints. The Discovery Service only provides
host:port. By default, if you connect to the Discovery Service without TLS (grpc://),
then all discovered endpoints will be connected to without TLS. If you connect to
the Discovery Service with TLS (grpcs://), then all discovered endpoints will be
connected to with TLS. You can use this configuration setting to force either grpc
or grpcs for all discovered endpoints, regardless of how you connected to the
Discovery Service. Please note that it is highly recommended not to connect to the
Discovery Service or any discovered endpoints without TLS (grpc://), as all information
will be sent over plaintext, un-encrypted.

	endorsement-handler - string - The path to the endorsement handler. Allows for a
custom handler to be used. This handler is used in the sendTransactionProposal
method to determine the target peers and how to send the proposal.
(default ‘fabric-client/lib/impl/DiscoveryEndorsementHandler.js’)

	commit-handler - string - The path to the commit handler. Allows for
a custom handler to be used. This handler is used in the sendTransaction method
to determine the orderers and how to send the transaction to be committed.
(default ‘fabric-client/lib/impl/BasicCommitHandler.js’)

How the DiscoveryEndorsementHandler works

The sendTransactionProposal will use the peers included in the “targets” to
endorse the proposal. If there is no “targets” parameter, the endorsement request
will be handled by the endorsement handler.
The default handler that comes with the fabric-client is designed to use the
results from the fabric discovery service. The peer that is assigned as the
target during channel initialization will be the peer that is sent the
discovery service request.
The discovery service results will be based on the chaincode of the endorsement
or based on an endorsement hint (endorsementHint) included in the endorsement
request. The hint may include one or more chaincodes and each chaincode may
include one or more associated collection names. Results will be refreshed using
the discovery-cache-life system setting. By default the cache life is
5 minutes. This may be changed easily by using the following.

Client.setConfigSetting('discover-cache-life', <milliseconds>);

If there are no service discovery results, the handler will send the
endorsement request to the peers that have been assigned to the channel with
the endorsingPeer role (a peer that has nor been assigned a role will default
to having that role, this means that a role must be explicitly turned off).

When the handler processes the discovery service results it assumes that all
peers referenced have a peer instance object created and assigned to the channel
instance object. The channel instance will build the required peer instances to
support endorsements when it processes the discovery service results before
passing the results to the handler. The channel will not build new peer instances
if the peer is already assigned to the channel either by the application or by a
previous discovery service request.

The default ‘DiscoveryEndorsementHandler’ takes optional parameters that allow
the application to specify peers or organizations that will be preferred,
ignored or required. The discovery service results will include groups of peers
and layouts that specify how many peers from each group it will take to satisfy
the endorsement policy of the proposal’s chaincode or the endorsement policies
of the endorsement hint.
Each group will be modified using the parameters of the endorsement call.
The handler will first remove peers that are not required or should be ignored.
Then the group list will be sorted by ledger height or randomized.
Finally preferred peers will be moved to the top of the group list.
The handler will randomly select a layout to make the endorsement.
The handler looks at each group in the layout and selects the number
peers specified by that group in the layout. The number of peers is the
number of endorsements needed to satisfy the endorsement policy.
Peers will be selected starting at the top of the modified group list
to be sent an endorsement request.
If any of the requests fail, the handler will select the next available peer
from the modified group list. If the number of successful endorsements reaches
the number of peers called out for each group in the layout, the handler
will successfully return the endorsements.
If there are not enough successful endorsements, the handler will
select another random layout and try again or return an error indicating
that it was unable to complete successfully. The error will include
the responses from all peers.

Note: The default handler does not remember the results of the previous call.
Peers that may have failed will be tried again. With randomizing and
refreshing of the discovery service results, the order of how peers are
selected will likely change on every request.

Note: If the above behavior does not meet the needs of your organization a
custom handler may be used.

How the BasicCommitHandler works

The default handler that comes with the fabric-client will send to one orderer at
a time until it receives a successful submission of the transaction. Sending
a transaction (a set of endorsements) to an orderer does not mean that the transaction
will be committed, it means that the request was built properly and that the
sender has the authority to send the request. The response from the orderer
will indicate that the orderer has accepted the request. The sendTransaction
has an optional parameter orderer that indicates the orderer to send the
transaction. The handler will use the orderer as specified with the orderer
parameter and not send to any other orderers. If no orderer is specified the handler
will get the list of orderers assigned to the channel. These orderers may have
been assigned manually to the channel with a channel.addOrderer() call or
assigned automatically when using the service discovery.

To Initialize

By default the fabric-client will not use the service discovery. To enable the
use of the service, set the config setting to true or use the discover parameter
on the initialize() call.

note: {@link Channel#initialize} must be run to both enable discovery and to
startup the handlers.

Client.setConfigSetting('initialize-with-discovery', true);
--or--
Client.addConfigFile('/path/to/config.json');
// the json file contains the following line
//"initialize-with-discovery": true

//--or--

await channel.initialize({discover:true});

To use the service discovery on the initialize(), a channel must have at
least one peer assigned with the discovery role or a target must be provided on
the call. Peers may be assigned automatically by loading a connection profile
or they may have been added manually with the channel.addPeer().

await channel.initialize({
	discover: true,
	target: peer
});

//--or--

await channel.initialize({
	discover: true,
	target: 'peer2.org2.example.com' //peer defined in the connection profile
});

//--or--

// no target specified, using the first peer with the discover role
// peer was added to the channel either by the 'addPeer' or when using
// a connection profile
await channel.initialize({
	discover: true
});

The return results of initialization with service discovery will be the MSP configurations,
the peers, the orderers, and the endorsing plans for all chaincodes on the
channel in JSON format. The results are stored and cached internally and the caller
does not have to do anything with the results, they are provided only for reference.

The initialize call also allows for changing the endorsement handler by specifying
a path to a custom endorsement handler. The handler may be changed independently
of using the service discovery. The default endorsement handler however does use
discovery service results to determine the endorsing peers.

await channel.initialize({
	endorsementHandler: '/path/to/my/handler.js'
});

When the fabric network is running in a docker-compose and the node.js application
is running outside of the docker containers, it will be necessary to modify the
addresses returned from the service discovery. The service discovery sees the
addresses of the peers and orderers as host names and ports, however the node.js
application running outside of docker will only know the endpoints as localhost
and port. In the docker-compose file, notice how Docker is mapping the port addresses,
these must be same when using service discovery. Using - 7061:7051 will not
work as the fabric-client does not have visibility into the docker-compose file.

Notice in the following definition of a peer from a docker-compose file.
The port number is the same and has been defined along with the
host name peer0.org1.example.com:7051 for the peer and gossip settings.
The node.js fabric-client application running outside of of the docker
containers will use localhost:7051.

peer0.org1.example.com:
 container_name: peer0.org1.example.com
 image: hyperledger/fabric-peer
 environment:
	- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
	- CORE_PEER_ID=peer0.org1.example.com
	- CORE_PEER_ADDRESS=peer0.org1.example.com:7051
	- CORE_PEER_LISTENADDRESS=peer0.org1.example.com:7051
	- CORE_PEER_GOSSIP_ENDPOINT=peer0.org1.example.com:7051
	- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.org1.example.com:7051
	- FABRIC_LOGGING_SPEC=debug
	## the following setting redirects chaincode container logs to the peer container logs
	- CORE_VM_DOCKER_ATTACHSTDOUT=true
	- CORE_PEER_LOCALMSPID=Org1MSP
	- CORE_PEER_MSPCONFIGPATH=/etc/hyperledger/msp/peer
	##
	- CORE_PEER_TLS_ENABLED=true
	- CORE_PEER_TLS_CLIENTAUTHREQUIRED=true
	- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/msp/peer/tls/key.pem
	- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/msp/peer/tls/cert.pem
	- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/msp/peer/cacerts/org1.example.com-cert.pem
	- CORE_PEER_TLS_CLIENTROOTCAS_FILES=/etc/hyperledger/msp/peer/cacerts/org1.example.com-cert.pem
	# # the following setting starts chaincode containers on the same
	# # bridge network as the peers
	# # https://docs.docker.com/compose/networking/
	- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=fixtures_default
 working_dir: /opt/gopath/src/github.com/hyperledger/fabric
 command: peer node start
 ports:
	- 7051:7051
 volumes:
	 - /var/run/:/host/var/run/
	 - ./channel/crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/:/etc/hyperledger/msp/peer
 depends_on:
	- orderer.example.com

The channel.initialize() call as new parameter to indicate that the hostname
mapping to localhost should be done. Use the asLocalhost with true or false,
the default is false.

await channel.initialize({discover:true, asLocalhost:true})

Using peers added manually to the channel:

Only one peer will now be required to be added to the channel when the applications
programmatically adds the peers and orderers to build a channel instance.
The peer must have the role discover. As with all roles, if the role
is not defined and set to false, the peer will have that role on the channel by
default.

const channel = client.newChannel('mychannel');
const peer = client.newPeer(....);
channel.addPeer(peer);
await channel.initialize({discover:true});

When the channel is initialized using service discovery and peers and orderers are added
to the channel, a peer with the address that was used for service discovery
will likely be on the list of discovered peers. A peer with the address used for
service discovery will not be added again to the channel as a peer with that address
has already been assigned to the channel.

The name a peer will be known by may be set by using the name setting when
creating the peer.

const peer = client.newPeer(url, {name: 'peer0', ...});

The default name of a peer will be the host name and port if the name parameter
is not provided or for peers added by service discovery.

peer0.org1.example.com:7051

Using a peer not added to the channel:

To use the service discovery a peer is required. The application
may define a peer and pass it on the initialize call. The peer does not
have to be added to the channel instance.

const channel = client.newChannel('mychannel');
const peer = client.newPeer(....);
await channel.initialize({discover:true, target:peer});

When the channel is initialized using service discovery and peers and orderers
are added to the channel, a peer with the address that was used for service
discovery will likely be on the list of discovered peers. A peer instance with
the address used for service discovery will be added to the channel with the
same address as the peer instance used for service discovery because the peer
instance used on the initialize call is not added to the channel, it is only
used on the initialize call.

If the application chooses to use no longer use the peer on the initialize
call or the peer that was automatically assigned call the channel.initialize()
again and provide a peer instance or name. This new peer will be used going
forward for service discovery calls.

Using connection profile:

When using a connection profile, all the peers and orderers on the network will no
longer need to be provided. Just one peer will be required and assigned to the
channel. The peer must have the role discover. As with all roles, if the role
is not defined and set to false, the peer will have that role on the channel by
default.

The following example shows a peer that is going to be used primarily for service discovery.

channels:
 mychannel:
 peers:
 peer1.org2.example.com:
 endorsingPeer: false
 chaincodeQuery: false
 ledgerQuery: true
 eventSource: false
 discover: true
 peer2.org2.example.com:
 endorsingPeer: true
 chaincodeQuery: true
 ledgerQuery: true
 eventSource: false
 discover: false

peers:
 peer1.org2.example.com:
 url: grpcs://localhost:8051
 grpcOptions:
 ssl-target-name-override: peer1.org2.example.com
 tlsCACerts:
 path: test/fixtures/channel/c...
 peer2.org2.example.com:
 url: grpcs://localhost:8052
 grpcOptions:
 ssl-target-name-override: peer2.org2.example.com
 tlsCACerts:
 path: test/fixtures/channel/c...

When a channel is created using the client.getChannel() after the client
instance has loaded a connection profile, the fabric-client will create peers
and assign them to the channel.
The peers and orderers will inherent the connection options as assigned to
the client instance. see {@link Client#addConnectionOptions}
Peers with the the discover role will be used
when the channel.initialize() is called and no peer is passed as a target.

const client = Client.loadFromConfig(...);
const channel = client.getChannel('mychannel');
await channel.initialize({discover:true, asLocalhost:true};

If the initialize fails because the peer with the discover role is not online,
the application may select another peer.

await channel.initialize({discover:true, target:'peer2.org2.example.com'});

When the application passes a peer name or a peer instance to the initialize call,
that peer will be used and the discover role will not be checked.

The name a peer will be known by is the name used in the yaml file.

peer1.org2.example.com:port

The name of a peer will be the host name and port for peers added by the
service discovery.

peer0.org1.example.com:7051

To Endorse

As discussed above, the channel.sendTransactionProposal() will now use a pluggable
handler. The fabric-client will come with a handler that will use service discovery.
By default the endorsement-handler configuration setting will point to the
DiscoveryEndorsementHandler. If the channel has been initialized using the
service discovery and there are no targets define on the sendTransactionProposal
call, the handler will use the service discovery results based on the chaincode
of the proposal request to determine the target peers
to perform the endorsements.

const tx_id = client.newTransactionID();
const request = {
	chaincodeId : 'example',
	fcn: 'move',
	args: ['a', 'b','100'],
	txId: tx_id
};
await channel.sendTransactionProposal(request);

If the endorsement will require one or more chaincode to chaincode calls and/or
be over a collection or two, then the endorsement proposal request must include the
parameter “endorsement_hint”. This will assist the discovery service in putting
together an endorsement plan based on all the endorsement policies of chaincodes
and collections involved and the active peers on the network.
The following example shows a chaincode to chaincode call over collections.
Notice how the chaincode that starts the endorsement must also still be included
as the “chaincodeId” of the endorsement request.

const hint = { chaincodes: [
	{
		name: "my_chaincode1",
		collection_names: ["my_collection1", "my_collection2"]
	},
	{
		name: "my_chaincode2",
		collection_names: ["my_collection1", "my_collection2"]
	}
]};

const tx_id = client.newTransactionID();
const request = {
	chaincodeId : 'my_chaincode1',
	fcn: 'move',
	args: ['a', 'b','100'],
	txId: tx_id,
	endorsement_hint: hint
};
await channel.sendTransactionProposal(request);

The application is able to have specific peers or peers in a specified
organization chosen before other peers or not be chosen at all for endorsements.

	required: An array of strings that represent the names of peers.
Peers named on this list and in the endorsement plan will be the only
peers to be sent the endorsement request. Other peers found in the endorsement
plan will not be used.

	preferred: An array of strings that represent the names of peers that should
be given priority by the endorsement handler if their ledger height is up to date.

	ignored: An array of strings that represent the names of peers that should be
ignored by the endorsement handler.

	requiredOrgs: An array of strings that represent the names of organizations.
Peers found in the endorsement plan that are in these organizations will be
the only peers to be sent the endorsement request. Other peers found in the
endorsement plan will not be used.

	preferredOrgs: An array of strings that represent the MSP ids of organizations
that should be given priority by the endorsement handler if their ledger height is
up to date.

	ignoredOrgs: An array of strings that represent the MSP ids of organizations
that should be ignored by the endorsement handler.

	preferredHeightGap: An integer representing the maximum difference in the
ledger height of a peer and the highest ledger height found in a group of peers.
A peer will be given priority if it’s ledger height is within this range.
There is no default, if this value is not provided the ledger height of the peer
will not be considered when being added a peer to the preferred list.

	sort: A string value that indicates how the peers within groups should
be chosen. There are two sorts available:
”ledgerHeight”, sort the peers descending by the number of blocks
on the channel ledger.
”random”, sort the peers randomly from the list, the
preferred peers will be added randomly first then the others will be
added randomly.
The default is to sort by ledger height.

 Event Checkpointing

Event Checkpointing

This tutorial describes the approaches that can be selected by users of the fabric-network module for replaying missed events emitted by peers.

Overview

Events are emitted by peers when blocks are committed. Two types of events support checkpointing:

	Contract events (also known as chaincode events) - Defined in transactions to be emitted. E.g. an event emitted when a commercial paper is sold

	Block Events - Emitted when a block is committed

In the case of an application crashing and events being missed, applications may still want to execute the event callback for the event it missed. Peers in a Fabric network support event replay, and to support this, the fabric-network module supports checkpointing strategies that track the last block and transactions in that block, that have been seen by the client.

Disclaimer

Checkpointing in its current form has not been tested to deal with all recovery scenarios, so it should be used alongside existing recovery infrastructure. {@link module:fabric-network~FileSystemCheckpointer} is designed for Proof of Technology projects, so we strongly suggest implementing your own checkpointer using the {@link module:fabric-network~BaseCheckpointer} interface.

Notes

Block Number = Block Height - 1
When using checkpointing:

	The listener will only catch up on events if the startBlock is less than the current Block Number

	If the latest block in the checkpointer is block n the startBlock will be n + 1 (e.g. for checkpoint blockNumber=1,startBlock=2)

Checkpointers

The BaseCheckpoint class is an interface that is to be used by all Checkpoint classes. fabric-network has one default class, {@link module:fabric-network~FileSystemCheckpointer} that is exported as a factory in the {@link module:fabric-network~CheckpointFactories}. The FILE_SYSTEM_CHECKPOINTER is the default checkpointer.

A checkpoint factory is a function that returns an instance with BaseCheckpointer as a parent class. These classes implement the async save(channelName, listenerName) and async load() functions.

BaseCheckpointer.save() is called after the async callback function given to the event listener has finished processing.

Custom Checkpointer

Configuring a custom checkpointer requires two components to be created:

	The Checkpointer class

	The Factory

const fs = require('fs-extra');
const path = require('path');
const { Gateway } = require('fabric-network');

class FileSystemCheckpointer extends BaseCheckpointer {
 constructor(channelName, listenerName, fsOptions) {
 super(channelName, listenerName);
 this.basePath = path.resolve(fsOptions.basePath);
 this.channelName = channelName;
 this.listenerName = listenerName;
 }

 /**
 * Initializes the checkpointer directory structure
 */
 async _initialize() {
 const cpPath = this._getCheckpointFileName()
 }

 /**
 * Constructs the checkpoint files name
 */
 _getCheckpointFileName() {
 let filePath = path.join(this._basePath, this._channelName);
 if (this._chaincodeId) {
 filePath = path.join(filePath, this._chaincodeId);
 }
 return path.join(filePath, this._listenerName);
 }

 async save(transactionId, blockNumber) {
 const cpPath = this._getCheckpointFileName()
 if (!(await fs.exists(cpPath))) {
 await this._initialize();
 }
 const latestCheckpoint = await this.load();
 if (Number(latestCheckpoint.blockNumber) === Number(blockNumber)) {
 const transactionIds = latestCheckpoint.transactionIds;
 latestCheckpoint.transactionIds = transactionIds;
 } else {
 latestCheckpoint.blockNumber = blockNumber;
 latestCheckpoint.transactionIds = [transactionIds];
 }
 await fs.writeFile(cppPath, JSON.stringify(latestCheckpoint));
 }

 async load() {
 const cpPath = this._getCheckpointFileName(this._chaincodeId);
 if (!(await fs.exists(cpPath))) {
 await this._initialize();
 }
 const chkptBuffer = await fs.readFile(cpFile);
 let checkpoint = checkpointBuffer.toString('utf8');
 if (!checkpoint) {
 checkpoint = {};
 } else {
 checkpoint = JSON.parse(checkpoint);
 }
 return checkpoint;
 }
}

function File_SYSTEM_CHECKPOINTER_FACTORY(channelName, listenerName, options) {
 return new FileSystemCheckpointer(channelName, listenerName, options);
}

const gateway = new Gateway();
await gateway.connect({
 checkpointer: {
 factory: FILE_SYSTEM_CHECKPOINTER_FACTORY,
 options: {basePath: '/home/blockchain/checkpoints'} // These options will vary depending on the checkpointer implementation
});

In addition to save() and load() the BaseCheckpointer interface also has the loadLatestCheckpoint() function which, in the case that load() returns a list of checkpoints, will return the latest incomplete checkpoint (or whichever is most relevant for the specific implementation).

Note: When using the filesystem checkpointer, use absolute paths rather than relative paths.

When specifying a specific type of checkpointer for a listener, the checkpointer option in {@link module:fabric-network.Network~EventListenerOptions`}.

 Static event hub

 This tutorial describes how to define the behavior of the event hub selection strategy used when event hubs disconnect or new event hubs are required.

The ChannelEventHub is a fabric-client class that receives contract, commit and block events from the event hub within a peer. The fabric-network abstracts the event hub away, and instead uses an event hub selection strategy to create new event hub instances or reuse existing instances.

Below is an example event hub selection strategy:

class ExampleEventHubSelectionStrategy extends AbstractEventHubSelectionStrategy {

	constructor(peers) {
		this.peers = peers;
		this.disconnectedPeers = [];

		this.cleanupInterval = null;
	}
	_disconnectedPeerCleanup() {
		this.cleanupInterval = setInterval(() => {
			// Reset the list of disconnected peers every 10 seconds
			for (const peerRecord of disconnectedPeers) {
				// If 10 seconds has passed since the disconnect
				if (Date.now() - peerRecord.time > 10000) {
					this.disconnectedPeers = this.disconnectedPeers.filter((p) => p !== peerRecord.peer);
				}
			}

			if (this.disconnectedPeers.length === 0) {
				clearInterval(this.cleanupInterval);
				this.cleanupInterval = null;
			}
		}, 10000);
	}
	/**
	 * Returns the next peer in the list per the strategy implementation
	 * @returns {ChannelPeer}
	 */
	getNextPeer() {
		// Only select those peers that have not been disconnected recently
		let availablePeers = this.peers.filter((peer) => this.disconnectedPeers.indexOf(peer) === -1)
		if (availablePeers.length === 0) {
			availablePeers = this.peers;
		}
		const randomPeerIdx = Math.floor(Math.random() * availablePeers.length);
		return availablePeers[randomPeerIdx];
	}

	/**
	 * Updates the status of a peers event hub
	 * @param {ChannelPeer} deadPeer The peer that needs its status updating
	 */
	updateEventHubAvailability(deadPeer) {
		if (!this.cleanupInterval) {
			this._disconnectedPeerCleanup()
		}
		this.disconnectedPeers.push({peer: deadPeer, time: Date.now()})
	}
}

The event hub strategy exists at a gateway level, and is included in the GatewayOptions in the form of a factory function. The factory gives the event hub selection strategy instance a list of peers that it can select event hubs from.

function EXAMPLE_EVENT_HUB_SELECTION_FACTORY(network) {
	const orgPeers = getOrganizationPeers(network);
	const eventEmittingPeers = filterEventEmittingPeers(orgPeers);
	return new ExampleEventHubSelectionStrategy(eventEmittingPeers);
}

const gateway = new Gateway();
await gateway.connect(connectionProfile, {
	...
	eventHubSelectionOptions: {
		strategy: EXAMPLE_EVENT_HUB_SELECTION_FACTORY
	}
})

Static event hub

Calling {@link module:fabric-network.AbstractEventListener#setEventHub} allows you to set one event hub that will not change. On unanticipated disconnect the SDK will attempt to reconnect to that event hub, rather than select the next peer using the event hub selection strategy.

 Overview

 This tutorial illustrates the different ways of setting the gRPC settings used on connections to the Hyperledger Fabric network with a Hyperledger Fabric Node.js Client as of 1.4.

For more information on:

	getting started with Hyperledger Fabric see
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development.

Overview

The Hyperledger Fabric Node.js javascript SDK, fabric-client, communicates
with a Hyperledger Fabric network using gRPC. The gRPC technology, framework,
handles moving data reliably between the fabric network and the fabric client
application.
fabric-client allows the application to provide settings required to control
the environment.

fabric-client has default connection options that include default gRPC settings.
There are various ways for the application to override the default connection
options.

Default connection options

fabric-client has the following gRPC connection options as defaults.
These are in the default.json system configuration file that is included
with the fabric-client NPM package.

	"connection-options": {
		"grpc.max_receive_message_length": -1,
		"grpc.max_send_message_length": -1,
		"grpc.keepalive_time_ms": 120000,
		"grpc.http2.min_time_between_pings_ms": 120000,
		"grpc.keepalive_timeout_ms": 20000,
		"grpc.http2.max_pings_without_data": 0,
		"grpc.keepalive_permit_without_calls": 1
	}

	grpc.max_receive_message_length - Maximum message length that the channel
can receive. Int valued, bytes. -1 means unlimited.

	grpc.max_send_message_length - Maximum message length that the channel can
send. Int valued, bytes. -1 means unlimited.

	grpc.keepalive_time_ms - After a duration of this time the client/server
pings its peer to see if the transport is still alive. Int valued, milliseconds.

	grpc.keepalive_timeout_ms - After waiting for a duration of this time,
if the keepalive ping sender does not receive the ping ack, it will close the
transport. Int valued, milliseconds.

	grpc.keepalive_permit_without_calls - Is it permissible to send keepalive
pings without any outstanding streams. Int valued, 0(false)/1(true).

	grpc.http2.min_time_between_pings_ms - Minimum time between sending
successive ping frames without receiving any data frame.
Int valued, milliseconds.

	grpc.http2.max_pings_without_data - Minimum allowed time between a server
receiving successive ping frames without sending any data frame.
Int valued, milliseconds.

Change default connection options

The application may have a need to change or add new gRPC settings.
By using the system configuration, the application may change the default
connection options used for all new connections established.

The default connection options are retrieved as a set of options when
the {@link Client} instance builds new {@link Peer}s or new {@link Orderer}s.
To modify the default connection options before runtime, update the
default.json file or add your own configuration file to the system configuration.
The last file loaded will override all previous files including the default.json
file shipped with the fabric-client. see {@link BaseClient.addConfigFile}.

const Client = require('fabric-client');
Client.addConfigFile(<path to the config file>);

To modify the default connection options during runtime, get them from the
system configuration, make modifications, then set them back on the system
configuration.

const default_options = client.getConfigSetting('connection-options');
const new_option = {
 'grpc.keepalive_timeout_ms': 10000
};

// use the assign call to keep all other options and only update
// the one setting or add a setting.
const new_defaults = Object.assign(default_options, new_option);
client.setConfigSetting('connection-options', new_defaults);

// peer will have default options
const peer = client.newPeer(url, options);

Note: Making a change to the system configuration will have all new
connections use new default connection options. This includes the
connections that are created by new peers and new orderers that are
created automatically when using the discovery service.
Be careful when assigning new values to not remove other values.
All the default connection options are contained in the one system
configuration setting connection-options.

Add connection options to the client

The application may have a need to change or add new gRPC settings.
The application may add connection options to the client instance
that may be new options or to override existing default connection
options stored in the system configuration. See the above
discussion on how to change the options within the system configuration.

const new_options = {
 'grpc.keepalive_timeout_ms': 10000
};
client.addConnectionOptions(new_options);

// peer will have options from default and from client
const peer = client.newPeer(url, options);

// discovered peers will have options from default and from client
channel.initialize({discover: true, target: peer});

Note: All new connections created by this client, including those created
automatically when using the discovery service will use the client’s
connection options to override the default connection options.

Add connection options on create

The application may need unique connection options for individual
peers or orderers. Unique settings may be passed on the
{@link Client#newPeer} or
{@link Client#newOrderer} calls in the option parameter.
Options passed in on the call will override both the client based
options and the system configuration based options.

const options = {
 pem: '<pem string>',
	'ssl-target-name-override': 'myhost.org1.com',
 'grpc.keepalive_timeout_ms': 10000
};

// peer will have options from default, client, and parameter
const peer = client.newPeer(url, options);

Note: Connection options passed on the newPeer() and the newOrderer()
calls will only be used for that peer or orderer.

Add connection options to a common connection profile

Connection options may be set at the client level or individually on peers and
orderers when using a common connection profile. In the following profile
both the client section and one peer have a gRPC setting.

client:
 # Which organization does this application instance belong to? The value is the name of an org
 # defined under "organizations"
 organization: Org1

 # set connection timeouts for the peer and orderer for the client
 connection:
 timeout:
 peer:
 # the timeout in seconds to be used on requests to a peer,
 # for example 'sendTransactionProposal'
 endorser: 120
 # the timeout in seconds to be used by applications when waiting for an
 # event to occur. This time should be used in a javascript timer object
 # that will cancel the event registration with the channel event hub instance.
 eventHub: 60
 # the timeout in seconds to be used when setting up the connection
 # with the peer event hub. If the peer does not acknowledge the
 # connection within the time, the application will be notified over the
 # error callback if provided.
 eventReg: 3
 # the timeout in seconds to be used on request to the orderer,
 # for example
 orderer: 30
 # connection options, typically these will be common GRPC settings,
 # overriding what has been set in the system config file "default.json"
 options:
 grpc.keepalive_timeout_ms: 10000
peers:
 peer1.org2.example.com:
 url: grpcs://localhost:8051
 grpcOptions:
 ssl-target-name-override: peer1.org2.example.com
 grpc.keepalive_timeout_ms: 20000
 tlsCACerts:
 path: test/fixtures/channel/c...
 peer2.org2.example.com:
 url: grpcs://localhost:8052
 grpcOptions:
 ssl-target-name-override: peer2.org2.example.com
 tlsCACerts:
 path: test/fixtures/channel/c...

Note: All new connections created by this client, including those created
automatically when using the discovery service will use the client’s
connection options to override the default connection options. peer1
will be override the one setting with it’s own unique value. peer2
will not override any of the client’s or the system defaults.
The application may call the client.addConnectionOptions() to add
additional settings or override settings. Peers created by a call
to {@link Client#getPeer} or orderers created by a call to
{@link Client#getOrderer} or by a call to {@link Client#getChannel}
after the add call will use the new set of values.
[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Overview

 This tutorial illustrates the use of the handlers by the Hyperledger Fabric Node.js Client as of 1.3.

For more information on:

	getting started with Hyperledger Fabric see
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

	the configuration of a channel in Hyperledger Fabric and the internal
process of creating and updating see
Hyperledger Fabric channel configuration [http://hyperledger-fabric.readthedocs.io/en/latest/configtx.html]

	Service Discovery [https://hyperledger-fabric.readthedocs.io/en/latest/discovery-overview.html]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development, including the use of the
Javascript promise and async await.

Overview

The fabric-client provides the ability for custom code that will handle the
endorsement process and the submitting of endorsements to the orderer.
There are two plug points defined, one on the {@link Channel#sendTransactionProposal}
and one on the {@link Channel#sendTransaction}. The fabric-client will pass
control to the handler to complete the processing. The custom code may
decide to retry, try another end point, or use discovery to complete the
task.

see {@tutorial discovery} on how the default handlers are
used with discovery.

Modified API’s that will use handlers

	channel.initialize() - This method has been enhanced to instantiate
instances of the handlers for use by the channel. The method will get the
paths from the system configuration settings to create and initialize them.

	channel.sendTransactionProposal() - This method has been enhanced to use
an endorsement-handler if one has been instantiated and initialized.

	channel.sendTransaction() - This method has been enhanced to use
a commit-handler if one has been instantiated and initialized.

New configuration settings

	endorsement-handler - string - The path to the endorsement handler. Allows for a
custom handler to be used. This handler is used in the
{@linkcode Channel#sendTransactionProposal sendTransactionProposal()}
method to determine the target peers and how to send the proposal.
(default ‘fabric-client/lib/impl/DiscoveryEndorsementHandler.js’)

	commit-handler - string - The path to the commit handler. Allows for
a custom handler to be used. This handler is used in the
{@linkcode Channel#sendTransaction sendTransaction()} method
to determine the orderers and how to send the transaction to be committed.
(default ‘fabric-client/lib/impl/BasicCommitHandler.js’)

new Endorsement Handler

The sending of a proposal to be endorsed may be done using custom code. The
fabric-client will use by default the file called DiscoveryEndorsementHandler.
A different endorsement handler may be used by changing the configuration setting
“endorsement-handler” with the setConfigSetting() or placing a new line
in configuration JSON file that application has applied to the fabric-client
configuration. This will instantiate a handler
located at the path provide in the attribute for all channels initialized
after the call.
The default handler was designed to be used with discovery to provided automatic
selection of peers and fail over. When used without discovery the handler will
only send to the peers as defined in the targets parameter without fail over.
The handler may also be changed using the endorsementHandler attribute on the
channel.initialize() request call parameter. This will instantiate a handler
located at the path provide in the attribute just for this channel.

// set value in memory
Client.setConfigSetting('endorsement-handler', '/path/to/the/handler.js');
--or--
// the path to an additional config file
Client.addConfigFile('/path/to/config.json');
// the json file contains the following line
// "endorsement-handler": "/path/to/the/handler.js"
--or--
const request = {
	...
	endorsementHandler: "/path/to/the/handler.js",
	...
}
// initialize must be run to use handlers.
channel.initialize(request);

A endorsement handler must implement the api.EndorsementHandler. When the
channel is initialized, the channel will read the path setting and create an
instance of the handler for use by the new channel instance.

new CommitHandler

The sending of the endorsements to be committed may be done using custom code.
The fabric-client will use by default the file called BasicCommitHandler.
The commit handler may be changed by changing the configuration setting
“commit-handler” by doing a setConfigSetting() or placing a new line
in configuration JSON file that application has applied to the fabric-client
configuration.
The default handler was designed to be used with discovery to provided automatic
selection of orderers and fail over. When used without discovery the handler will
still provide fail over to all orderers assigned to the channel, sending to
each one in orderer until an orderer response successfully to the transaction
submission.
The handler may also be changed using the commitHandler attribute on the
channel.initialize() request call parameter. This will instantiate a handler
located at the path provide in the attribute just for this channel.

// set the config value in memory
Client.setConfigSetting('commit-handler', '/path/to/the/handler.js');
--or--
// path of an additional config file
Client.addConfigFile('/path/to/config.json');
// the json file contains the following line
// "commit-handler": "/path/to/the/handler.js"
--or--
const request = {
	...
	commitHandler: "/path/to/the/handler.js",
	...
}
// initialize must be run to use handlers.
channel.initialize(request);

A commit handler must implement the api.CommitHandler. When the
channel is initialized, the channel will read the path setting and create an
instance of the handler for use by the new channel instance.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Listening to events with Fabric Network

Listening to events with Fabric Network

This tutorial describes the different ways to listen to events emitted by a network using the fabric-network module.

Overview

There are three event types that can be subscribed to:

	Contract events - Those emitted explicitly by the chaincode developer within a transaction

	Transaction (Commit) events - Those emitted automatically when a transaction is committed after an invoke

	Block events - Those emitted automatically when a block is committed

Listening for these events allows the application to react without directly calling a transaction. This is ideal in use cases such as monitoring network analytics.

Usage

Each listener type takes at least one parameter, the event callback. This is the function that is called when an event is received.

The callback function given is expected to be a promise, meaning that the callback can perform asynchronous tasks without risking missing events.

Options

{@link module:fabric-network.Network~EventListenerOptions}.

Note: Listeners will connect to event hubs and ask to receive unfiltered events by default. To receive filtered events, set EventListenerOptions.filtered: true.

Naming

All event listeners (including CommitEventListeners, which use the transaction ID) must have a unique name at the Network level

Contract events

const gateway = new Gateway();
await gateway.connect(connectionProfile, gatewayOptions);
const network = await gateway.getNetwork('mychannel');
const contract = network.getContract('my-contract');

/**
 * @param {String} listenerName the name of the event listener
 * @param {String} eventName the name of the event being listened to
 * @param {Function} callback the callback function with signature (error, event, blockNumber, transactionId, status)
 * @param {module:fabric-network.Network~EventListenerOptions} options
**/
const listener = await contract.addContractListener('my-contract-listener', 'sale', (err, event, blockNumber, transactionId, status) => {
 if (err) {
 console.error(err);
 return;
 }
 console.log(`Block Number: ${blockNumber} Transaction ID: ${transactionId} Status: ${status}`);
})

Notice that there is no need to specify an event hub, as the EventHubSelectionStrategy will select it automatically.

Block events

const gateway = new Gateway();
await gateway.connect(connectionProfile, gatewayOptions);
const network = await gateway.getNetwork('mychannel');

/**
 * @param {String} listenerName the name of the event listener
 * @param {Function} callback the callback function with signature (error, blockNumber, transactionId, status)
 * @param {module:fabric-network.Network~EventListenerOptions} options
**/
const listener = await network.addBlockListener('my-block-listener', (error, block) => {
 if (err) {
 console.error(err);
 return;
 }
 console.log(`Block: ${block}`);
});

When listening for block events, it is important to specify if you want a filtered or none filtered event, as this determines which event hub is compatible with the request.

Commit events

Note: The listener listener name is transactionId.<some random string>

There are two methods for subscribing to a transaction commit event. Using {@link module:fabric-network.Network} and directly, using {@link module:fabric-network.Transaction}. Using {@link module:fabric-network.Transaction} directly, abstracts away the need to specify which transaction ID you wish to listen for.

Option 1

const gateway = new Gateway();
await gateway.connect(connectionProfile, gatewayOptions);
const network = await gateway.getNetwork('mychannel');
const contract = network.getContract('my-contract');

const transaction = contract.newTransaction('sell');
/**
 * @param {String} transactionId the transaction ID
 * @param {Function} callback the callback function with signature (error, transactionId, status, blockNumber)
 * @param {Object} options
**/
const listener = await network.addCommitListener(transaction.getTransactionID().getTransactionID(), (err, transactionId, status, blockNumber) => {
 if (err) {
 console.error(err);
 return;
 }
 console.log(`Transaction ID: ${transactionId} Status: ${status} Block number: ${blockNumber}`);
});

Option 2

const gateway = new Gateway();
await gateway.connect(connectionProfile, gatewayOptions);
const network = await gateway.getNetwork('mychannel');
const contract = network.getContract('my-contract');

const transaction = contract.newTransaction('sell');
/**
 * @param {String} transactionId the transaction ID
 * @param {Function} callback the callback function with signature (error, transactionId, status, blockNumber)
 * @param {Object} options
**/
const listener = await transaction.addCommitListener((err, transactionId, status, blockNumber) => {
 if (err) {
 console.error(err);
 return;
 }
 console.log(`Transaction ID: ${transactionId} Status: ${status} Block number: ${blockNumber}`);
});

Both Network.addCommitListener and Contract.addCommitListener have an optional eventHub parameter. When set, the listener will only listen to that event hub, and in the event of an unforeseen disconnect, it will try and to reconnect without using the EventHubSelectionStrategy.

Checkpointing

{@tutorial event-checkpointer}

Start Block and End Block

In the {@link module:fabric-network~EventListenerOptions} it is possible to specify a startBlock and an endBlock. This behaves in the same way as the same options on {@link ChannelEventHub} shown in the tutorial here {@tutorial channel-events}. Using startBlock and endBlock disables event replay using a checkpointer for the events received by that listener.

Unregistering listeners

addContractListener, addBlockListener and addCommitListener return a ContractEventListener, BlockEventListener and CommitEventListener respectively. Each has an unregister() function that removes the listener from the event hub, meaning no further events will be received from that listener until register() is called again.

 Overview

 This tutorial illustrates how to use the Hyperledger Fabric Node.js client logging feature.

Overview

Hyperledger Fabric Node.js client logging uses the Node.js ‘winston’ package.
The logging is initialized when the Node.js application first loads the Hyperledger
Fabric package. All Hyperledger Fabric client objects will use the same settings (Peer, Orderer, ChannelEventHub).

const Client = require('fabric-client');
// the logging is now set

There are four levels of logging

	info

	warn

	error

	debug

By default info, warn, and error log entries will be sent to the ‘console’.
debug will not be recorded.

How to change logging

The Hyperledger Fabric client’s logging is controlled by the configuration setting
hfc-logging and by the environment setting HFC_LOGGING.

	setting the logging settings in the default.json config file with an entry:

"hfc-logging": "{'debug':'console', 'info':'console'}"

	using an environment setting will override the configuration setting:

export HFC_LOGGING='{"debug":"console","info":"console"}'

The logging may use a file to write entries by specifying a file location as the
level value.

export HFC_LOGGING='{"debug":"/temp/debug.log","info":"console"}'

Using the logging from application

When there is a need to log entries from the application code along with the
Hyperledger Fabric client entries, use the following to get access to the same
logger.

as of 1.2

const logger = Client.getLogger('APPLICATION');

prior to 1.2

const sdkUtils = require('fabric-client/lib/utils.js');
const logger = sdkUtils.getLogger('APPLICATION');

To log

const log_info = 'Sometext';

logger.info('%s infotext', log_info);
// will log
// info: [APPLICATION]: Sometext infotext

logger.warn('%s warntext', log_info);
// will log
// warn: [APPLICATION]: Sometext warntext

logger.error('%s errortext', log_info);
// will log
// error: [APPLICATION]: Sometext errortext

logger.debug('%s debugtext', log_info);
// will log
// debug: [APPLICATION]: Sometext debugtext

 Overview

 This tutorial illustrates the use of adding metadata to your chaincode installation.
As of v1.1 the only metadata are the indexes that may be added to a CouchDB state
database of your channel ledger.

For more information:

	getting started with Hyperledger Fabric [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html]

	setting up a CouchDB as the state database [http://hyperledger-fabric.readthedocs.io/en/latest/couchdb_as_state_database.html]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development, including the use of the
Javascript Promise.

Overview

Fabric 1.1 has introduced the capability of defining indexes in a CouchDB state
database to help improve performance of your queries made in your chaincode.
The index definitions need to be in JSON format and in files with a .json extension.
These definitions will be included in the chaincode installation package that
is sent to the Fabric peer.

Modified API’s that allow for metadata

	client.installChaincode() - There is a new attribute (‘metadataPath’) that
may be included in the installation request. The value of the metadataPath is
a string representing the absolute path to the directory structure containing
the JSON index files.

Installing chaincode

The following example will install the chaincode ‘my_chaincode’ and include
index files.

let targets = buildTargets(); //build the list of peers that will require this chaincode
let chaincode_path = path.resolve(__dirname, '../chaincode/src/node_cc/my_chaincode');
let metadata_path = path.resolve(__dirname, '../chaincode/my_indexes');

// send proposal to install
var request = {
	targets: targets,
	chaincodePath: chaincode_path,
	metadataPath: metadata_path, // notice this is the new attribute of the request
	chaincodeId: 'my_chaincode',
	chaincodeType: 'node',
	chaincodeVersion: 'v1'
};

client.installChaincode(request).then((results) => {
	var proposalResponses = results[0];
	// check the results
}, (err) => {
	console.log('Failed to send install proposal due to error: ' + err.stack ? err.stack : err);
	throw new Error('Failed to send install proposal due to error: ' + err.stack ? err.stack : err);
});

The following shows the path used as the metadataPath above. This is the
required directory structure required under the path.
The indexes directory will hold the files with the index definitions.
The required directory structure and files with a ‘json’ extension will be
included in the chaincode installation package under the ‘META_INF’ package
directory. ‘META-INF’ should not be included in your local directory structure.

 ..
 <> chaincode
 │
 └─── <> my_indexes // here is where the 'metadataPath' will point to
 │
 └─── <> statedb //starting here are the required directories
 │
 └─── <> couchdb
 │
 └─── <> indexes // this directory will contain the index files
 index-owner.json // these will be the index files and must
 index-address.json // have the file extension of 'json'

Each index must be defined in its own text file with an extension of *.json
and contain the index definition formatted in JSON following the
CouchDB index JSON syntax [http://docs.couchdb.org/en/2.1.1/api/database/find.html#db-index].

{"index":{"fields":["docType","owner"]},"ddoc":"indexOwnerDoc", "name":"indexOwner","type":"json"}

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Connecting to an orderer or peer with TLS client authentication enabled

 This tutorial illustrates how to use the node SDK APIs to connect to an
orderer or peer which has TLS client authentication enabled (aka “mutual TLS”).

An orderer has TLS client authentication enabled if the
ORDERER_GENERAL_TLS_CLIENTAUTHREQUIRED environment variable is set to true.

A peer has TLS client authentication enabled if the
CORE_PEER_TLS_CLIENTAUTHREQUIRED environment variable is set to true.

Connecting to an orderer or peer with TLS client authentication enabled

After retrieving the client certificate and client key, assign those to the
Client instance. The Client instance will then assign the material to each
orderer and peer it creates.

For example, the following demonstrates how to assign to the client first.
Then build an orderer and peer which will then
have the TLS client authentication enabled. This assumes that the client’s
PEM-encoded TLS key and certificate are at somepath/tls/client.key and
somepath/tls/client.crt, respectively.

let serverCert = fs.readFileSync(path.join(__dirname, 'somepath/msp/tlscacerts/example.com-cert.pem'));
let clientKey = fs.readFileSync(path.join(__dirname, 'somepath/tls/client.key'));
let clientCert = fs.readFileSync(path.join(__dirname, 'somepath/tls/client.crt'));

client.setTlsClientCertAndKey(Buffer.from(clientCert).toString(), Buffer.from(clientKey).toString());

let orderer = client.newOrderer(
 'grpcs://localhost:7050',
 {
 'pem': Buffer.from(serverCert).toString()
 });

let peer = client.newPeer(
 'grpcs://localhost:7051',
 {
 'pem': Buffer.from(serverCert).toString()
 }
);

 Overview

 This tutorial illustrates the use of common connection profiles. Connection profiles are a new feature of the Hyperledger Fabric Node.js Client as of 1.1. A connection profile will describe the Hyperledger Fabric network to the Hyperledger Fabric Node.js Client (fabric client).

For more information on:

	getting started with Hyperledger Fabric see
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

	the configuration of a channel in Hyperledger Fabric and the internal
process of creating and updating see
Hyperledger Fabric channel configuration [http://hyperledger-fabric.readthedocs.io/en/latest/configtx.html]

	cryptographic generation see
cryptogen [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html#crypto-generator]

	configuration transaction generator see
configtxgen [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html#configuration-transaction-generator]

	configuration translation tool see
configtxlator [https://github.com/hyperledger/fabric/tree/master/examples/configtxupdate]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development, including the use of the
Javascript Promise.

Overview

A connection profile contain entries that describe the Hyperledger Fabric network including entries that describe the fabric client that will access the the network. The application will load a configuration file and then it will be used by fabric client to simplify the steps needed to setup and use the network. The connection profile has specific addresses and settings of network items. Resources like javascript classes to instantiate are stored in the fabric client’s configuration system. It will be easier to work with a fabric client loaded with a connection profile configuration because it reduces the setup before calling an action. Parameters for items like targets may be specified by name and object will not have to be created and maintained before the action is called. On many calls if no target peer is specified, the fabric client will look to see if there is a Peer in the role needed for the action.

API’s to load a connection profile

	Client.loadFromConfig() - A static utility method to get a fabric client instance loaded with the connection profile configuration.

	client.loadFromConfig() - A fabric client instance method to load a connection profile configuration, overriding any existing connection profile configuration settings that may have been set when this client object was created by the call above.

new API’s that use a loaded connection profile

	client.initCredentialStores() - A fabric client instance method to create a state store and assign it to the fabric client instance based on the current settings in the loaded connection profile configuration. It will also create the crypto suite and assign it to the fabric client instance. A crypto store will be created and assigned to crypto suite if needed. (HSM based crypto suites do not require a crypto store).

	client.setTlsClientCertAndKey(clientCert, clientKey) -A fabric client instance method that will set a certificate and the corresponding private key on the client instance. Mutual TLS client settings are not stored within the connection profile. When a peer or orderer instance is created for the user from the endpoints defined in the connection profile, these settings will be used as the client mutual TLS settings. When using mutual TLS and a connection profile, this method must be called before endpoints are required. Calling this method is only required when using mutual TLS and a connection profile.

	channel.newChannelEventHub() - A fabric channel instance method to create an channel-based event hub based on the current settings in the loaded connection profile configuration of the named peer.

	channel.getChannelEventHubsForOrg() - A fabric channel instance method to return a list of channel-based event hubs that are associated with an organizations. Peers in an organizations that have the eventSource set to true will be returned.

	client.getPeersForOrg() - A fabric client instance method to return a list of peer objects that are associated with an organizations.

Modified API’s that will use the connection profile configuration if one has been loaded

	client.getChannel() - A fabric client instance method that will create a channel instance object based on the settings for a channel defined in the currently loaded connection profile configuration.

	client.newTransactionID(<boolean>) - This method was modified to allow for a boolean to indicate that the transaction id generated should be based on the administrative identity if one has been assigned rather than the user context assigned to the fabric client.

	client.setUserContext() - Now allows username and password as a parameter or a User object. When username and password are used the fabric client will perform an enroll with the certificate authority using the username and password.

	client.installChaincode() - If the targets parameter is excluded from the request parameter list then the peers defined in the current organization of the client will be used.

	client.queryXXXX() - The query API’s will now take a peer name (as defined in the connection profile config) or peer object instance as the target.

	channel.instantiateChaincode() - If the targets parameter is excluded from the request parameter list then the peers defined in the current organization of the client that are also on this channel will be used.

	channel.sendTransactionProposal() The request object parameter may use names for targets or let the fabric client find peers to use for targets as defined in the connection profile configuration.

	channel.sendTransaction() The request object parameter may use orderer name or let the fabric client find an orderer to use as defined in the connection profile configuration.

	channel.queryXXXX() - All the query API’s will now take a peer name as the target rather than an peer instance object.

Loading connection profile configurations

The application code can either point to a yaml or json file that contains the configuration information or it may pass a Javascript object directory to the API’s to load a configuration. For convenience there is a static utility method on the fabric-client to create a new fabric client object and load a connection profile configuration at the same time. There is also a method on the fabric client instance that may be used to load a connection profile configuration on top of an existing connection profile configuration.

The following example will create a new instance of the fabric-client and load a connection profile configuration. However in this case the connection profile configuration does not contain any information about the client side of the fabric network, just the fabric network elements.

var client = Client.loadFromConfig('test/fixtures/network.yaml');

Here is the connection profile definition loaded

name: "Network"
version: "1.0"

channels:
 mychannel:
 orderers:
 - orderer.example.com
 peers:
 peer0.org1.example.com:
 endorsingPeer: true
 chaincodeQuery: true
 ledgerQuery: true
 eventSource: true
 peer0.org2.example.com:
 endorsingPeer: true
 chaincodeQuery: false
 ledgerQuery: true
 eventSource: false

organizations:
 Org1:
 mspid: Org1MSP
 peers:
 - peer0.org1.example.com
 certificateAuthorities:
 - ca-org1
 adminPrivateKey:
 path: test/fixtures/channel/crypto-config/peerOrganizations/org1.example.com/users/Admin@org1.example.com/keystore/9022d671ceedbb24af3ea69b5a8136cc64203df6b9920e26f48123fcfcb1d2e9_sk
 signedCert:
 path: test/fixtures/channel/crypto-config/peerOrganizations/org1.example.com/users/Admin@org1.example.com/signcerts/Admin@org1.example.com-cert.pem

 Org2:
 mspid: Org2MSP
 peers:
 - peer0.org2.example.com
 certificateAuthorities:
 - ca-org2
 adminPrivateKey:
 path: test/fixtures/channel/crypto-config/peerOrganizations/org2.example.com/users/Admin@org2.example.com/keystore/5a983ddcbefe52a7f9b8ee5b85a590c3e3a43c4ccd70c7795bec504e7f74848d_sk
 signedCert:
 path: test/fixtures/channel/crypto-config/peerOrganizations/org2.example.com/users/Admin@org2.example.com/signcerts/Admin@org2.example.com-cert.pem

orderers:
 orderer.example.com:
 url: grpcs://localhost:7050
 grpcOptions:
 ssl-target-name-override: orderer.example.com
 grpc-max-send-message-length: 4194304
 tlsCACerts:
 path: test/fixtures/channel/crypto-config/ordererOrganizations/example.com/orderers/orderer.example.com/tlscacerts/example.com-cert.pem

peers:
 peer0.org1.example.com:
 url: grpcs://localhost:7051
 grpcOptions:
 ssl-target-name-override: peer0.org1.example.com
 grpc.keepalive_time_ms: 600000
 tlsCACerts:
 path: test/fixtures/channel/crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tlscacerts/org1.example.com-cert.pem

 peer0.org2.example.com:
 url: grpcs://localhost:8051
 grpcOptions:
 ssl-target-name-override: peer0.org2.example.com
 tlsCACerts:
 path: test/fixtures/channel/crypto-config/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tlscacerts/org2.example.com-cert.pem

certificateAuthorities:
 ca-org1:
 url: https://localhost:7054
 httpOptions:
 verify: false
 tlsCACerts:
 path: test/fixtures/channel/crypto-config/peerOrganizations/org1.example.com/ca/org1.example.com-cert.pem
 registrar:
 - enrollId: admin
 enrollSecret: adminpw
 caName: caorg1

 ca-org2:
 url: https://localhost:8054
 httpOptions:
 verify: false
 tlsCACerts:
 path: test/fixtures/channel/crypto-config/peerOrganizations/org2.example.com/ca/org2.example.com-cert.pem
 registrar:
 - enrollId: admin
 enrollSecret: adminpw
 caName: caorg2

The following example will have an existing fabric client load a connection profile configuration. The definition will only contain client side definitions and no fabric network definitions. The client may load a new profile at anytime, it will overlay the top level sections it contains of those previously loaded. In this case the file being loaded only has a client section, therefore the loaded definition will now have the previously loaded channels, organizations, peers, orderers, and certificateAuthorities section definitions and the newly loaded client section definition. This allows for an existing fabric client to be able to work within different organization.
Notice this client definition contains a connection section with an options attribute in the
client section. Settings defined here will be applied to new peer and orderer
instances the client creates.
This will include peers and orderers that will be created automatically when
using the discovery service.
Peers and Orderers may override these connection settings in their grpcOptions settings.

Note: The fabric-client grpc-max-send-message-length and grpc-max-receive-message-length defaults are -1 (unlimited).

client.loadFromConfig('test/fixtures/org1.yaml');

Here is the client definition loaded above

name: "Org1 Client"
version: "1.0"

client:
 organization: Org1
 credentialStore:
 path: "/tmp/hfc-kvs/org1"
 cryptoStore:
 path: "/tmp/hfc-cvs/org1"
 connection:
 options
 grpc.keepalive_time_ms: 120000

Setup the stores

The next step is to set up the client object with the state and crypto stores. If the client section of the connection profile configuration has these defined then it is a simple matter of running the following. This API is promise based, notice that we will need a .then on the returned promise to have it actually execute. This API does not return anything, however it has created a state store and assigned it to the client, it has created a CryptoSuite and also assigned it to the client, and created a crypto store and assigned that to the crypto suite. Notice the credentialStore and cryptoStore definitions above in the client section of the connection profile configuration. In this case we are using two different locations, it may be easier to have these in the same locations when first starting out.

The following will create two stores and a CryptoSuite and assign them to the fabric client all based on the loaded configurations.

client.initCredentialStores()
.then((nothing) => {

Work with user context

When there is certificate Authority information on the organization, the fabric client may be used to simplify the enrollment and user context creation. The application will still have to register new users with the certificate authority, however when a connection profile configuration has been loaded there a simpler way to get a certificate authority client.

So first let’s enroll an admin user so that we have the credentials (crypto material) needed to interact with the certificate authority and the fabric network. The following convenience method will first look in the state store (as defined above) to see if the user exist. If the user is not found and there is a connection profile configuration loaded, the fabric client will build a certificate authority client object as defined in the fabric client configuration with the address as defined in the currently loaded connection profile configuration. The fabric client uses the certificate authority client to enroll the admin user with the certificate authority, this requires that a new set of keys be generated on the client side. The fabric client will then use the signed certificate returned by the certificate authority from the enroll to create a user context. The context will then be assign it to fabric client and stored in the state store along with storing the keys in the crypto store. At this point the fabric client is ready to interact with the fabric network and the application may use the returned user object to interact with the certificate authority.

In the following example we are able to enroll the user because it known by the certificate authority. New users will have to be registered first.

client.setUserContext({username:'admin', password:'adminpw'})
.then((admin) => {

The following example will have the fabric client build a certificate authority client based on the currently loaded connection profile configuration by first finding which organization defined in the client section and then finding the certificate authority associated with that organization.

var fabric_ca_client = client.getCertificateAuthority();

Then once we have a fabric-ca-client, we will be able to register new users. We could also use the fabric-ca-client to enroll users and make a few calls to the fabric client to create a user object and then assign that user object to the fabric client, but it will be much easier to just use the convenience method of the fabric client instance. Notice how we have to use the ‘admin’ user object returned from the client.setUserContext() to do the register. The admin user object has the credentials needed to the register. Then notice we called the same setUserContext method as we did with the admin above, this will have the fabric client object assigned with the ‘user1’ user context thus providing the credentials to interact with the fabric network. Note that the setUserContext also stores the user context which contains the signed certificate from the certificate authority and newly created public and private keys of the now enrolled user.

fabric_ca_client.register({enrollmentID: 'user1', affiliation: 'org1'}, admin)
.then((secret) => {
	return client.setUserContext({username:'user1', password:secret});
}).then((user)=> {

Work with mutual TLS

When your network is using mutual TLS, the client certificate and private key must be available to the client instance before the endpoints are automatically built. The client instance will be able to pass the required material to the endpoint instance that is needed to establish the connection. The example shown will also retrieve the material. These steps must be performed before any actions on the fabric network.

// get the CA associated with this client's organization
let fabric_ca_client = client.getCertificateAuthority();

let request = {
	enrollmentID: 'user1',
	enrollmentSecret: secret,
	profile: 'tls'
};

// make the request to build the keys and get the certificate
fabric_ca_client.enroll(request)
.then((enrollment) => {
 // Successfully called the Certificate Authority to get the TLS material
 let key = enrollment.key.toBytes();
 let cert = enrollment.certificate;

 // set the material on the client to be used when building endpoints for the user
 client.setTlsClientCertAndKey(cert, key);
 ...

When an admin is needed

Notice in the organizations section of the connection profile configuration that an organization may have a signed cert setting and admin private key setting that are associated with the organization. This is a convenience for your organization such that operations that require a fabric network administrator will be able to get one easily. These credentials will be assigned to the fabric client when the configuration is loaded. If one has not been assigned than the current user context assigned to the fabric client is assumed to be an administrator. There is also a convenience method on the client object that will assign credentials to the client to be used for operations that require an admin.

client.setAdminSigningIdentity('admin privateKey','admin cert');

Assume that a common connection profile has been loaded, setting up both an organization with an admin and indicating that the client is in that organization. Then when the call is made to get a transaction id object, the fabric client will check to see if an admin has been assigned to the fabric client and use that to generate the transaction id. The transaction id returned will be tagged that it was generated with the assigned administrative identity. Notice how the request object being built is using just a name for the orderer rather than an Orderer object. The fabric client will look up this name in the loaded connection profile configuration. When the createChannel call is made, the fabric client will know that this action should be signed by the administrative identity because the transaction id was marked as an admin based transaction. Note that the administrative signing identity is not required if the logged in user is an administrative user and has been assigned to the fabric client.

let tx_id = client.newTransactionID(true);

let request = {
	config: config,
	signatures : signatures,
	name : channel_name,
	orderer : 'orderer.example.com',
	txId : tx_id
};

return client.createChannel(request);
}).then((result) => {

When a peer is needed

Notice how a peer is added to an organization, it is more than just a reference to the actual peer definition, the peer is also defined to have roles within that organization.

peer0.org2.example.com:
 endorsingPeer: true
 chaincodeQuery: false
 ledgerQuery: true
 eventSource: false

This peer may be used to endorse transaction, but not used to run chaincode queries. This peer may be used to audit the channel by making ledger based queries (like queryBlock), but may not be used to be an event source. Of course this combination of roles does not make much sense in real life.

So let’s have a look at a chaincode invoke endorsement

let tx_id = client.newTransactionID();

var request = {
 chaincodeId : 'example',
 fcn: 'move',
 args: ['a', 'b','100'],
 txId: tx_id
};

channel.sendTransactionProposal(request)
.then((results) => {

Notice that we have left off the targets parameter of the request object. This will have the fabric client do a lookup of peers on this channel in the connection profile configuration. The fabric client will be looking for peers defined in the role of endorsingPeer. The fabric client will then send the proposal to the located peers and return all the endorsements in the results object.

There may be a need to have only the peers in a specific organization. Use the mspid of the organization.

var peers = getPeersForOrg('Org1MSP');

Or maybe for the organization that is defined in the client section of the connection profile.

var peers = getPeersForOrg();

When an orderer is needed

After receiving endorsements from the peers for a transaction proposal, they will need to be sent to an orderer along with the proposal for a transaction to be committed to the ledger.

var request = {
	proposalResponses: proposalResponses,
	proposal: proposal
};

channel.sendTransaction(request)
.then((results) => {

Notice that an orderer to send this transaction to is not included in the request object. The orderer defined in the connection profile configuration will be used.

When doing queries

When there is a connection profile configuration loaded and the query call is not passed a target peer to use, the fabric client will look in the connection profile configuration for a peer to use.

	These are fabric client based queries and require the user have an admin role or indicate that the admin identity should be used. These queries do not use the connection profile config lookup to find a peer to use and must be passed the target peer.

	queryChannels

	queryInstalledChaincodes

	These queries are channel based queries that require a peer with the ledgerQuery role.

	queryInstantiatedChaincodes (user must be an admin or indicate that the assigned admin identity should be used)

	queryInfo

	queryBlockByHash

	queryBlock

	queryTransaction

	this is a channel based query and requires a peer with the chaincodeQuery role.

	queryByChaincode

When monitoring for events

Working with an channel-based event hub will not changed when a connection profile configuration has been loaded. A new method has been added to the fabric client to simplify setting up of an ChannelEventHub object. Use the following to get an ChannelEventHub object that will be setup to work with the named peer’s channel-based event hub.

var channel_event_hub = channel.newChannelEventHub('peer0.org1.example.com');

Notice how the parameter to the call is the name of the peer. All settings to create an channel-based event hub are defined by the connection profile configuration under the peer by that name.

peer0.org1.example.com:
 url: grpcs://localhost:7051
 grpcOptions:
	ssl-target-name-override: peer0.org1.example.com
	grpc.keepalive_time_ms: 600000
 tlsCACerts:
	path: test/fixtures/channel/crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tlscacerts/org1.example.com-cert.pem

The following will be a list of event hubs that are within the ‘Org1’ organization.
All peers referenced by an organization that the ‘eventSource’ set to true.
Use the mspid of the organization.

var channel_event_hubs = channel.getChannelEventHubsForOrg('Org1MSP');

The following will be a list of channel-based event hubs that are within the organization defined in the client section of the connection profile.

var channel_event_hubs = channel.getChannelEventHubsForOrg();

What does the Fabric Client look for in a common connection profile

The Fabric Client will be looking for the following key names and parameters for those keys:

#
Schema version of the content. Used by the SDK to apply the parsing rules.
#
version: "1.0" # only supported version as of fabric-client v1.3.0

#
The client section is SDK-specific. These are the settings that the
NodeSDK will use to automatically set up a Client instance.
#
client:
 # Which organization does this application instance belong to? The value must be the name of an org
 # defined under "organizations" ... see below
 organization: Org1

 # Some SDKs support pluggable KV stores, the properties under "credentialStore"
 # are implementation specific
 credentialStore:
 # Specific to FileKeyValueStore.js or similar implementations in other SDKs. Can be others
 # if using an alternative impl. For instance, CouchDBKeyValueStore.js would require an object
 # here for properties like url, db name, etc.
 path: "/tmp/hfc-kvs"
 or
 <implementation specific properties>

 # Specific to the CryptoSuite implementation. Software-based implementations like
 # CryptoSuite_ECDSA_AES.js in node SDK requires a key store. PKCS#11 based implementations does
 # not.
 cryptoStore:
 # Specific to the underlying KeyValueStore that backs the crypto key store.
 path: "/tmp/hfc-cvs"
 or
 <implementation specific properties>

 # Sets the connection timeouts for new peer and orderer objects when the client creates
 # peer and orderer objects during the client.getPeer() and client.getOrderer() calls
 # or when the peer and orderer objects are created automatically when a channel
 # is created by the client.getChannel() call.
 connection:
 timeout:
 peer:
 # the timeout in seconds to be used on requests to a peer,
 # for example 'sendTransactionProposal'
 endorser: 120
 # the timeout in seconds to be used by applications when waiting for an
 # event to occur. This time should be used in a javascript timer object
 # that will cancel the event registration with the channel event hub instance.
 eventHub: 60
 # the timeout in seconds to be used when setting up the connection
 # with a peer event hub. If the peer does not acknowledge the
 # connection within the time, the application will be notified over the
 # error callback if provided.
 eventReg: 3
 # the timeout in seconds to be used on request to the orderer,
 # for example
 orderer: 30

#
How a channel is defined and the peers and orderers on that channel. When the
client.getChannel() call is used the client will pre-populate the channel with
orderers and peers as defined in this section.
#
channels:
 # name of the channel
 mychannel2:
 # List of orderers designated by the application to use for transactions on this channel.
 # The values must be orderer names defined under "orderers" section
 orderers:
 - orderer.example.com

 # List of peers from participating organizations
 peers:
 # The values must be peer names defined under "peers" section
 peer0.org1.example.com:
 # Will this peer be sent transaction proposals for endorsement? The peer must
 # have the chaincode installed. The app can also use this property to decide which peers
 # to send the chaincode install request. Default: true
 endorsingPeer: true

 # Will this peer be sent query proposals? The peer must have the chaincode
 # installed. The app can also use this property to decide which peers to send the
 # chaincode install request. Default: true
 chaincodeQuery: true

 # Will this peer be sent query proposals that do not require chaincodes, like
 # queryBlock(), queryTransaction(), etc. Default: true
 ledgerQuery: true

 # Will this peer be the target of a SDK listener registration? All peers can
 # produce events but the app typically only needs to connect to one to listen to events.
 # Default: true
 eventSource: true

 # Will this peer be the target of Discovery requests.
 # Default: true
 discover: true

#
list of participating organizations in this network
#
organizations:
 Org1:
 mspid: Org1MSP

 # The peers that are known to be in this organization
 peers:
 - peer0.org1.example.com

 # Certificate Authorities issue certificates for identification purposes in a Fabric based
 # network. Typically certificates provisioning is done in a separate process outside of the
 # runtime network. Fabric-CA is a special certificate authority that provides a REST APIs for
 # dynamic certificate management (enroll, revoke, re-enroll). The following section is only for
 # Fabric-CA servers.
 certificateAuthorities:
 - ca-org1

 # If the application is going to make requests that are reserved to organization
 # administrators, including creating/updating channels, installing/instantiating chaincodes, it
 # must have access to the admin identity represented by the private key and signing certificate.
 # Both properties can be the PEM string or local path to the PEM file.
	# path: <the path to a file containing the byte string>
	# or
	# pem: <the byte string>
	# Note that this is mainly for convenience in development mode, production systems
	# should not expose sensitive information this way.
	# The SDK should allow applications to set the org admin identity via APIs, and only use
 # this route as an alternative when it exists.
 adminPrivateKey:
 path: <path to file>
 or
 pem: <byte string>
 signedCert:
 path: <path to file>
 or
 pem: <byte string>

 # the profile will contain public information about organizations other than the one it belongs to.
 # These are necessary information to make transaction lifecycles work, including MSP IDs and
 # peers with a public URL to send transaction proposals. The file will not contain private
 # information reserved for members of the organization, such as admin key and certificate,
 # fabric-ca registrar enroll ID and secret, etc.
 Org2:
 mspid: Org2MSP
 peers:
 - peer0.org2.example.com
 certificateAuthorities:
 - ca-org2
 adminPrivateKey:
 path: <path to file>
 or
 pem: <byte string>
 signedCert:
 path: <path to file>
 or
 pem: <byte string>

#
List of orderers to send transaction and channel create/update requests.
#
orderers:
 orderer.example.com:
 url: grpcs://localhost:7050

 # these are standard properties defined by the gRPC library
 # they will be passed in as-is to gRPC client constructor
 grpcOptions:
 ssl-target-name-override: orderer.example.com

 tlsCACerts:
 path: <path to file>
 or
 pem: <byte string>

#
List of peers to send various requests to, including endorsement, query
and event listener registration.
#
peers:
 peer0.org1.example.com:
 # this URL is used to send endorsement and query requests
 url: grpcs://localhost:7051

 grpcOptions:
 ssl-target-name-override: peer0.org1.example.com
 request-timeout: 120001

 tlsCACerts:
 path: <path to file>
 or
 pem: <byte string>

 peer0.org2.example.com:
 url: grpcs://localhost:8051
 grpcOptions:
 ssl-target-name-override: peer0.org2.example.com
 tlsCACerts:
 path: <path to file>
 or
 pem: <byte string>

#
Fabric-CA is a special kind of Certificate Authority provided by Hyperledger Fabric which allows
certificate management to be done via REST APIs. Application may choose to use a standard
Certificate Authority instead of Fabric-CA, in which case this section would not be specified.
#
certificateAuthorities:
 ca-org1:
 url: https://localhost:7054
 # the properties specified under this object are passed to the 'http' client verbatim when
 # making the request to the Fabric-CA server
 httpOptions:
 verify: false
 tlsCACerts:
 path: <path to file>
 or
 pem: <byte string>

 # Fabric-CA supports dynamic user enrollment via REST APIs. A "root" user, a.k.a registrar, is
 # needed to enroll and invoke new users.
 registrar:
 - enrollId: admin
 enrollSecret: adminpw
 # The optional name of the CA.
 caName: ca-org1

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Overview

 This tutorial illustrates how to use the Node.js SDK APIs to store and retrieve private data in the Hyperledger Fabric network.

Starting in v1.2, Fabric offers the ability to create private data collections, which allows a subset of organizations on
a channel to endorse, commit, or query private data without having to create a separate channel. For more information,
refer to:

	Private Data Concept [http://hyperledger-fabric.readthedocs.io/en/latest/private-data/private-data.html]

	Private Data Architecture [http://hyperledger-fabric.readthedocs.io/en/latest/private-data-arch.html]

	Using Private Data in Fabric [http://hyperledger-fabric.readthedocs.io/en/latest/private_data_tutorial.html]

Overview

The following are the steps to use private data with the Node.js SDK (fabric-client). Check out the sections below for details on these steps.

	Create a collection definition json file

	Implement chaincode to store and query private data

	Install and instantiate chaincode with a collection definition

	Invoke chaincode to store and query private data

	Purge private data

	Query for a collection definition

Create a collection definition json file

A collection definition describes who can persist data, how many peers the data is distributed to, how many peers are
required to disseminate the private data, and how long the private data is persisted in the private database. Chaincode APIs
will map the collection to the private data by the collection name.

A collection definition is composed of the following five properties.

	name: Name of the collection.

	policy: Defines the organization peers allowed to persist the collection data.

	requiredPeerCount: Number of peers required to disseminate the private data as a condition
of the endorsement of the chaincode

	maxPeerCount: For data redundancy purposes, the number of other peers that the current
endorsing peer will attempt to distribute the data to. If an endorsing peer goes down, these
other peers are available at commit time if there are requests to pull the private data.

	blockToLive: For very sensitive information such as pricing or personal information,
this value represents how long the data should live on the private database in terms of blocks.
The data will be purged after this specified number of blocks on the private database. To keep
private data indefinitely, that is, to never purge private data, set the blockToLive property to 0.

Here is a sample collection definition JSON file, containing an array of two collection definitions:

[
	{
		"name": "collectionMarbles",
		"policy": {
			"identities": [
				{
					"role": {
						"name": "member",
						"mspId": "Org1MSP"
					}
				},
				{
					"role": {
						"name": "member",
						"mspId": "Org2MSP"
					}
				}
],
			"policy": {
				"1-of": [
					{
						"signed-by": 0
					},
					{
						"signed-by": 1
					}
]
			}
		},
		"requiredPeerCount": 1,
		"maxPeerCount": 2,
		"blockToLive": 100
	},
	{
		"name": "collectionMarblePrivateDetails",
		"policy": {
			"identities": [
				{
					"role": {
						"name": "member",
						"mspId": "Org1MSP"
					}
				}
],
			"policy": {
				"1-of": [
					{
						"signed-by": 0
					}
]
			}
		},
		"requiredPeerCount": 1,
		"maxPeerCount": 1,
		"blockToLive": 100
	}
]

This example contains two private data collections: collectionMarbles and collectionMarblePrivateDetails.
The policy property in the collectionMarbles definition allows all members of the channel (Org1 and Org2) to have
the private data in a private database. The collectionMarblesPrivateDetails collection allows only members of Org1
to have the private data in their private database.

For Node.js SDK, you must define policies in the same format as shown above.

Implement chaincode to store and query private data

Fabric provides chaincode APIs to store and query private data. As an example, check out marbles private data example [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02_private/go/marbles_chaincode_private.go]
to understand how to use the chaincode APIs to read and write private data.

This example implements the following functions to manage private data.

	readMarble: query the values of the name, color, size and owner attributes using collection collectionMarbles.

	readMarblePrivateDetails: query the values of the price attribute using collection collectionMarblePrivateDetails.

	initMarble: store private data for the collections.

	delete: delete a marble from private database.

Install and instantiate chaincode with a collection definition

Client applications interact with the blockchain ledger through chaincode. As such
we need to install and instantiate the chaincode on every peer that will execute and
endorse transactions. When instantiated a chaincode on a channel the collection will
be associated with that chaincode.

	Install chaincode. No specific parameter needed to support private data.

	Instantiate chaincode. To support private data, the request must include the collections-config attribute.

const collectionsConfigPath = path.resolve(__dirname, collection_definition_json_filepath);
const request = {
	targets: peers,
	chaincodeId: chaincodeId,
	chaincodeType: chaincodeType,
	chaincodeVersion: chaincodeVersion,
	fcn: functionName,
	args: args,
	txId: tx_id,
	'collections-config': collectionsConfigPath
};
const endorsementResults = await channel.sendInstantiateProposal(request, time_out);
// additional code needed to validate endorsementResults and send transaction to commit
......

Invoke chaincode to store and query private data

You must be authorized to transact with the private data based on the policy defined in collection definition.
Recall that the above collection definition allows all members of Org1 and Org2 to access collectionMarbles (name,
color, size, and owner) in their private database, but only peers in Org1 can have access to
collectionMarblePrivateDetails (price) in their private database.

Acting as a member of Org1, you can do the following with marbles private data example [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02_private/go/marbles_chaincode_private.go],

	Invoke initMarble to create a marble with private data.

	Invoke readMarble to read name, color, size and owner from the private database for collectionMarbles.

	Invoke readMarblePrivateDetails to read price from the private database for collectionMarblePrivateDetails.

Purge private data

The Hyperledger Fabric allows client applications to optionally purge the private data in a collection by setting the
blockToLive property. This option may be needed when private data include personal or confidential information
and transacting parties want to have a limited lifespan for the data.

When blockToLive is set to a non-zero value in the collection definition file, Fabric will automatically purge the related
private data after the specified number of blocks are committed. Client applications do not need to call any API.

Query for a collection definition

The Hyperledger Fabric allows client applications to query a peer for collection definitions.
The Node.js SDK (fabric-client) has an API that will query a Hyperledger Fabric Peer for a
collection definition associated with a chaincode running on the specified channel.
See {@link Channel#queryCollectionsConfig} for detailed information.

const request = {
	chaincodeId: chaincodeId,
	target: peer
};

try {
	const response = await channel.queryCollectionsConfig(request);
	// response contains an array of collection definitions
	return response;
} catch (error) {
	throw error;
}

Include private data in a transaction invocation

The client application must put all private data into the transient
data of the proposal request if the application wishes to keep
the data private. Transient data is not returned in the
endorsement results, only the hash of the transient data is
returned in the endorsement created by the peer.
The chaincode executed during the endorsement will be responsible
for pulling the private data from the transient area of the proposal
request and then work with the private data store of the peer.

Example using fabric-network API

// Private data sent as transient data: { [key: string]: Buffer }
const transientData = {
	marblename: Buffer.from('marble1'),
	color: Buffer.from('red'),
	owner: Buffer.from('John'),
	size: Buffer.from('85'),
	price: Buffer.from('99')
};
const result = await contract.createTransaction('initMarble')
	.setTransient(transientData)
	.submit();

Example using fabric-client API

// private data
const transient_data = {
	'marblename': Buffer.from('marble1'), // string <-> byte[]
	'color': Buffer.from('red'), // string <-> byte[]
	'owner': Buffer.from('John'), // string <-> byte[]
	'size': Buffer.from('85'), // string <-> byte[]
	'price': Buffer.from('99') // string <-> byte[]
};
const tx_id = client.newTransactionID();
const request = {
	chaincodeId : chaincodeId,
	txId: tx_id,
	fcn: 'initMarble',
	args: [], // all data is transient data
	transientMap: transient_data // private data
};

// results will not contain the private data
const endorsementResults = await channel.sendTransactionProposal(request);

 Query handling strategies

 This tutorial describes how peers are selected to evaluate transactions
that will not then be written to the ledger, which may also be considered
as queries.

Query handling strategies

The SDK provides several selectable strategies for how it should evaluate
transactions on peers in the network. The available strategies are defined
in DefaultQueryHandlerStrategies. The desired strategy is (optionally)
specified as an argument to connect() on the Gateway, and is used for
all transaction evaluations on Contracts obtained from that Gateway
instance.

If no query handling strategy is specified, MSPID_SCOPE_SINGLE is used
by default. This will evaluate all transactions on the first peer from
which is can obtain a response, and only switch to another peer if this
peer fails.

const { Gateway, DefaultQueryHandlerStrategies } = require('fabric-network');

const connectOptions = {
 queryHandlerOptions: {
 strategy: DefaultQueryHandlerStrategies.MSPID_SCOPE_SINGLE
 }
}

const gateway = new Gateway();
await gateway.connect(connectionProfile, connectOptions);

Plug-in query handlers

If behavior is required that is not provided by the default query handling
strategies, it is possible to implement your own query handling. This is
achieved by specifying your own factory function as the query handling
strategy. The factory function should return a query handler
object and take one parameter:

	Blockchain network: Network

The Network provides access to peers on which transactions should be
evaluated.

function createQueryHandler(network) {
 /* Your implementation here */
 return new MyQueryHandler(peers);
}

const connectOptions = {
 queryHandlerOptions: {
 strategy: createQueryHandler
 }
 }

const gateway = new Gateway();
await gateway.connect(connectionProfile, connectOptions);

The query handler object returned must implement the following functions.

class MyQueryHandler {
	/**
	 * Evaluate the supplied query on appropriate peers.
	 * @param {Query} query A query object that provides an evaluate()
	 * function to invoke itself on specified peers.
	 * @returns {Buffer} Query result.
	 */
 async evaluate(query) { /* Your implementation here */ }
}

For a complete sample plug-in query handler implementation, see sample-query-handler.ts [https://github.com/hyperledger/fabric-sdk-node/blob/master/test/typescript/integration/network-e2e/sample-query-handler.ts].

 Overview

 This tutorial illustrates how to work with an offline private key with the Hyperledger Fabric Node.js SDK (fabric-client and fabric-ca-client) APIs.

For more information on:

	getting started with Hyperledger Fabric see
Building your first network [http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html].

	The transactional mechanics that take place during a standard asset exchange.
transacton flow in fabric [https://hyperledger-fabric.readthedocs.io/en/latest/txflow.html].

	The Certificate Signing Request (CSR) in a PKI system.
CSR [https://en.wikipedia.org/wiki/Certificate_signing_request]

The following assumes an understanding of the Hyperledger Fabric network
(orderers and peers),
and of Node application development, including the use of the
Javascript promise and async await.

Overview

In most use cases the fabric-client will persist the user’s credentials including the private key and sign transactions for the user. However some business scenarios may require higher level of privacy. What if the user wants to keep their private key secret and does not trust another system or backend server to securely store it and use it?

The fabric-client comes with the ability to sign a transaction with an offline private key. By contrast to call setUserContext() with the user’s identity (which contains the user’s private key), an alternative way is to split the sign a tx process out of the fabric-client and let the application layer choose the place to store the private key, sign the transaction and send the signed transaction back. By this approach, the fabric-client does not require the user’s private key any more.

The Fabric-ca comes with the ability to enroll with a PKCS#10 standard CSR, which means the user can use an existing key pairs to generate the CSR and send this CSR to Fabric-ca to get the signed certificate. The fabric-ca-client also accepts a CSR at the API enroll().

The transaction flow for signing a transaction offline

The following will show the steps to signing a transaction offline:

With the user’s identity (cert and private key) set at the fabric client:

	Endorse -> Channel.sendTransactionProposal()

	Commit -> Channel.sendTransaction()

	ChannelEventHub -> ChannelEventHub.connect() (if the channel-eventhub has not connected to the peers)

Without the user’s private key at the fabric client:

	Endorse:

	generate an unsigned transaction proposal with the identity’s certificate -> Channel.generateUnsignedProposal()

	sign the unsigned transaction proposal with the identity’s private key offline producing a signed transaction proposal

	send the signed transaction proposal to the peer(s) and get endorsement(s) -> Channel.sendSignedProposal()

	Commit:

	generate an unsigned transaction with the endorsements -> Channel.generateUnsignedTransaction()

	sign the unsigned transaction with the identity’s private key offline producing a signed transaction

	send the signed transaction to the orderer -> Channel.sendSignedTransaction()

	Register Channel Event Listerner:
If the channel event hub has not connected to the peer, the channel eventhub registration needs the private key’s signature too.

	generate an unsigned eventhub registration for the ChannelEventHub -> ChannelEventHub.generateUnsignedRegistration()

	sign the unsigned eventhub registration with the identity’s private key offline producing a signed eventhub registration

	using the signed eventhub registration for the ChannelEventHub’s registration -> ChannelEventHub.connect({signedEvent})

How to sign a transaction by an identity’s private key

There might be several digital signature algorithms. If we set the user’s identity at the fabric client, the fabric client would use ECDSA with algorithm ‘EC’ by default.

Here is how this works with an offline private key.

	first, generate an unsigned transaction proposal with the identity’s certificate

const certPem = '<PEM encoded certificate content>';
const mspId = 'Org1MSP'; // the msp Id for this org

const transactionProposal = {
 fcn: 'move',
 args: ['a', 'b', '100'],
 chaincodeId: 'mychaincodeId',
 channelId: 'mychannel',
};
const { proposal, txId } = channel.generateUnsignedProposal(transactionProposal, mspId, certPem);
// now we have the 'unsigned proposal' for this transaction

	calculate the hash of the transaction proposal bytes.

A hash algorithm should be picked and calculate the hash of the transaction proposal bytes.

There exists multiple hash functions (such as SHA2/3). by default, the fabric client will use ‘SHA2’ with key size 256.

The user may use an alternative implementation

const proposalBytes = proposal.toBuffer(); // the proposal comes from step 1

const hashFunction = xxxx; // A hash function by the user's desire

const digest = hashFunction(proposalBytes); // calculate the hash of the proposal bytes

	calculate the signature for this transaction proposal

We may have a series of choices for the signature algorithm. Including asymmetric keys (such as ECDSA or RSA), symmetric keys (such as AES).

By default the the fabric client will use ECDSA with algorithm ‘EC’.

// This is a sample code for signing the digest from step 2 with EC.
// Different signature algorithm may have different interfaces

const elliptic = require('elliptic');
const { KEYUTIL } = require('jsrsasign');

const privateKeyPEM = '<The PEM encoded private key>';
const { prvKeyHex } = KEYUTIL.getKey(privateKeyPEM); // convert the pem encoded key to hex encoded private key

const EC = elliptic.ec;
const ecdsaCurve = elliptic.curves['p256'];

const ecdsa = new EC(ecdsaCurve);
const signKey = ecdsa.keyFromPrivate(prvKeyHex, 'hex');
const sig = ecdsa.sign(Buffer.from(digest, 'hex'), signKey);

// now we have the signature, next we should send the signed transaction proposal to the peer
const signature = Buffer.from(sig.toDER());
const signedProposal = {
 signature,
 proposal_bytes: proposalBytes,
};

	send the signed transaction proposal to peer(s)

const sendSignedProposalReq = { signedProposal, targets };
const proposalResponses = await channel.sendSignedProposal(sendSignedProposalReq);
// check the proposal responses, if all good, commit the transaction

	similar to step 1, generate an unsigned transaction

const commitReq = {
 proposalResponses,
 proposal,
};

const commitProposal = await channel.generateUnsignedTransaction(commitReq);

	similar to step 3, sign the unsigned transaction with the user’s private key

const signedCommitProposal = signProposal(commitProposal);

	commit the signed transaction

const response = await channel.sendSignedTransaction({
 signedProposal: signedCommitProposal,
 request: commitReq,
});

// response.status should be 'SUCCESS' if the commit succeed

	similar to step 1, generate an unsigned eventhub registration for the ChannelEventHub.

const unsignedEvent = eh.generateUnsignedRegistration({
 certificate: certPem,
 mspId,
});

	similar to step 3, sign the unsigned eventhub registration with the user’s private key

const signedProposal = signProposal(unsignedEvent);
const signedEvent = {
 signature: signedProposal.signature,
 payload: signedProposal.proposal_bytes,
};

	register this ChannelEventHub at peer

channelEventHub.connect({signedEvent});

A full test can be found at fabric-sdk-node/test/integration/signTransactionOffline.js

How to enroll with a CSR

The fabric-ca-client provides the API enroll() that accepts an optional param ‘CSR’.
If the params does not contains CSR, fabric-ca-client will first generate a key pair,
then use the user’s enrollmentID as the common name to create a CSR which is signed with
the new generated private key. The response will contain the private key object if no ‘CSR’
in enroll params.

To enroll with a CSR, first we should call fabric-ca-client API register to register
a new identity at Fabric-ca. After a successfully register, we have the enrollmentID and enrollmentSecret.

Then we should create the CSR. A common way is using the openssl command.

Notice the CSR must contain the information “common name” and the “common name” must be
same as the “enrollmentID” at the register step.

Here is an example of how to create a CSR with the key algorithm rsa and key size 2048 bits

openssl req -nodes -newkey rsa:2048 -keyout test.key -out test.csr

The test.csr from the above command is represented as a Base64 encoded PKCS#10.

Here is how we call enroll with a CSR

const fs = require('fs');
const csr = fs.readFileSync('the path to test.csr', 'utf8');
const req = {
 enrollmentID: enrollmentID,
 enrollmentSecret: enrollmentSecret,
 csr: csr,
};

const enrollment = await caService.enroll(req);

// the enrollment.certificate contains the signed certificate from Fabric-ca

 Overview

 This tutorial describes the approaches that can be selected by users of the
fabric-network module for ensuring that submitted transactions are committed
on peers.

Overview

The submit of a transaction involves several steps:

	Send proposals to endorsing peers.

	Send the endorsed transaction to the orderer.

	The transaction is eventually committed on all peers in the network.

In some cases a client application might be happy to proceed immediately after
the transaction is successfully sent to the orderer. In other cases a client
application might need to ensure that the transaction has been committed on
certain peers with which it wants to interact before proceeding.

It is important to note that the blockchain state visible from a specific peer
will remain unchanged until a transaction is committed on that peer. If a
client application queries a peer for state after an endorsed transaction has
been successfully sent to the orderer but before the transaction has been
committed on that peer, the state returned will still be that prior to the
transaction. For example, a query of a bank balance after a transaction to
deduct funds from that bank account is submitted to the orderer will return
the old balance until the transaction is eventually committed on the peer
being queried.

Event handling strategies

The SDK provides several selectable strategies for how it should wait for
commit events following a transaction invocation. The available strategies
are defined in DefaultEventHandlerStrategies. The desired strategy is
(optionally) specified as an argument to connect() on the Gateway, and
is used for all transaction invocations on Contracts obtained from that
Gateway instance.

If no event handling strategy is specified, MSPID_SCOPE_ALLFORTX is used
by default.

const { Gateway, DefaultEventHandlerStrategies } = require('fabric-network');

const connectOptions = {
 event